Research Article
BibTex RIS Cite

$C$-CANONICAL MODULES

Year 2021, Volume: 30 Issue: 30, 243 - 259, 17.07.2021
https://doi.org/10.24330/ieja.969917

Abstract

Let $C$ be a semidualizing module over a commutative Noetherian local ring $R$. In this paper we introduce a new class of modules, namely $C$-canonical modules which are a generalization of canonical modules. It is shown that if the canonical module exists then the $C$-canonical module exists and the converse holds under special conditions. Also, a new characterization of Gorenstein local rings is given via $C$-canonical modules.

References

  • Y. Aoyama, On the depth and the projective dimension of the canonical module, Japan. J. Math., 6 (1980), 61-66.
  • Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ., 23 (1983), 85-94.
  • M. P. Brodmann, R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Second edition, Cambridge University Press, 2013.
  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Revised edition, Cambridge University Press, Cambridge, 1993.
  • L. W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc., 353(5) (2001), 1839-1883.
  • L. W. Christensen and S. Sather-Wagstaff, A Cohen-Macaulay algebra has only finitely many semidualizing modules, Math. Proc. Cambridge Philos. Soc., 145(3) (2008), 601-603.
  • Mohammad T. Dibaei and Arash Sadeghi, Linkage of modules and the Serre conditions, J. Pure Appl. Algebra, 219 (2015), 4458-4478.
  • H.-B. Foxby, Gorenstein modules and related modules, Math. Scand., 31 (1972), 267-284.
  • A. J. Frankild, S. Sather-Wagstaff, and A. Taylor, Relations between semidualizing complexes, J. Commut. Algebra, 1(3) (2009), 393-436.
  • E. S. Golod, $G$-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov., 165 (1984), 62-66.
  • R. Hartshorne, Local Cohomology, A seminar given by A. Grothendieck, Harvard University, Fall 1961, Springer-Verlag, Berlin-New York, 1967.
  • J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay-Rings, Lect. Notes in Math., Vol. 238, Springer-Verlag, Berlin-New York, 1971.
  • M. Hochster and C. Huneke, Indecomposable canonical modules and connectedness, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 197-208.
  • H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1986.
  • S. Nasseh and S. Sather-Wagstaff, Geometric aspects of representation theory for DG algebras: answering a question of Vasconcelos, J. Lond. Math. Soc. (2), 96(1) (2017), 271-292.
  • I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc., 32 (1972), 417-420.
  • R. Y. Sharp, Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings, Proc. Lond. Math. Soc. (3), 25 (1972), 303-328.
  • R. Takahashi and D. White, Homological aspects of semidualizing modules, Math. Scand., 106(1) (2010), 5-22.
  • W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Mathematics Studies, No. 14., North-Holland Publishing Co., Amsterdam-Oxford, 1974.
  • S. Sather-Wagstaff, Semidualizing modules and the divisor class group, Illinois J. Math., 51(1) (2007), 255-285.
  • S. Sather-Wagstaff, Semidualizing Modules, in preperation, URL: https://www.ndsu.edu/pubweb/ ssatherw/DOCS/sdm.pdf.
Year 2021, Volume: 30 Issue: 30, 243 - 259, 17.07.2021
https://doi.org/10.24330/ieja.969917

Abstract

References

  • Y. Aoyama, On the depth and the projective dimension of the canonical module, Japan. J. Math., 6 (1980), 61-66.
  • Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ., 23 (1983), 85-94.
  • M. P. Brodmann, R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Second edition, Cambridge University Press, 2013.
  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Revised edition, Cambridge University Press, Cambridge, 1993.
  • L. W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc., 353(5) (2001), 1839-1883.
  • L. W. Christensen and S. Sather-Wagstaff, A Cohen-Macaulay algebra has only finitely many semidualizing modules, Math. Proc. Cambridge Philos. Soc., 145(3) (2008), 601-603.
  • Mohammad T. Dibaei and Arash Sadeghi, Linkage of modules and the Serre conditions, J. Pure Appl. Algebra, 219 (2015), 4458-4478.
  • H.-B. Foxby, Gorenstein modules and related modules, Math. Scand., 31 (1972), 267-284.
  • A. J. Frankild, S. Sather-Wagstaff, and A. Taylor, Relations between semidualizing complexes, J. Commut. Algebra, 1(3) (2009), 393-436.
  • E. S. Golod, $G$-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov., 165 (1984), 62-66.
  • R. Hartshorne, Local Cohomology, A seminar given by A. Grothendieck, Harvard University, Fall 1961, Springer-Verlag, Berlin-New York, 1967.
  • J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay-Rings, Lect. Notes in Math., Vol. 238, Springer-Verlag, Berlin-New York, 1971.
  • M. Hochster and C. Huneke, Indecomposable canonical modules and connectedness, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 197-208.
  • H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1986.
  • S. Nasseh and S. Sather-Wagstaff, Geometric aspects of representation theory for DG algebras: answering a question of Vasconcelos, J. Lond. Math. Soc. (2), 96(1) (2017), 271-292.
  • I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc., 32 (1972), 417-420.
  • R. Y. Sharp, Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings, Proc. Lond. Math. Soc. (3), 25 (1972), 303-328.
  • R. Takahashi and D. White, Homological aspects of semidualizing modules, Math. Scand., 106(1) (2010), 5-22.
  • W. V. Vasconcelos, Divisor Theory in Module Categories, North-Holland Mathematics Studies, No. 14., North-Holland Publishing Co., Amsterdam-Oxford, 1974.
  • S. Sather-Wagstaff, Semidualizing modules and the divisor class group, Illinois J. Math., 51(1) (2007), 255-285.
  • S. Sather-Wagstaff, Semidualizing Modules, in preperation, URL: https://www.ndsu.edu/pubweb/ ssatherw/DOCS/sdm.pdf.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mohammad Bagherı This is me

Abdol-javad Taherızadeh This is me

Publication Date July 17, 2021
Published in Issue Year 2021 Volume: 30 Issue: 30

Cite

APA Bagherı, M., & Taherızadeh, A.-j. (2021). $C$-CANONICAL MODULES. International Electronic Journal of Algebra, 30(30), 243-259. https://doi.org/10.24330/ieja.969917
AMA Bagherı M, Taherızadeh Aj. $C$-CANONICAL MODULES. IEJA. July 2021;30(30):243-259. doi:10.24330/ieja.969917
Chicago Bagherı, Mohammad, and Abdol-javad Taherızadeh. “$C$-CANONICAL MODULES”. International Electronic Journal of Algebra 30, no. 30 (July 2021): 243-59. https://doi.org/10.24330/ieja.969917.
EndNote Bagherı M, Taherızadeh A-j (July 1, 2021) $C$-CANONICAL MODULES. International Electronic Journal of Algebra 30 30 243–259.
IEEE M. Bagherı and A.-j. Taherızadeh, “$C$-CANONICAL MODULES”, IEJA, vol. 30, no. 30, pp. 243–259, 2021, doi: 10.24330/ieja.969917.
ISNAD Bagherı, Mohammad - Taherızadeh, Abdol-javad. “$C$-CANONICAL MODULES”. International Electronic Journal of Algebra 30/30 (July 2021), 243-259. https://doi.org/10.24330/ieja.969917.
JAMA Bagherı M, Taherızadeh A-j. $C$-CANONICAL MODULES. IEJA. 2021;30:243–259.
MLA Bagherı, Mohammad and Abdol-javad Taherızadeh. “$C$-CANONICAL MODULES”. International Electronic Journal of Algebra, vol. 30, no. 30, 2021, pp. 243-59, doi:10.24330/ieja.969917.
Vancouver Bagherı M, Taherızadeh A-j. $C$-CANONICAL MODULES. IEJA. 2021;30(30):243-59.