Research Article
BibTex RIS Cite

On $+\infty$-$\omega_0$-generated field extensions

Year 2022, Volume: 31 Issue: 31, 100 - 120, 17.01.2022
https://doi.org/10.24330/ieja.1058420

Abstract

A purely inseparable field extension $K$ of a field $k$ of characteristic $p\not=0$ is said to be $\omega_0$-generated
over $k$ if $K/k$ is not finitely generated, but $L/k$ is finitely generated for each proper intermediate field $L$.
In 1986, Deveney solved the question posed by R. Gilmer and W. Heinzer, which consists in knowing if the lattice of intermediate fields of an $\omega_0$-generated field extension $K/k$ is necessarily linearly ordered under inclusion, by constructing an example of an $\omega_0$-generated field extension where $[k^{p^{-n}}\cap K: k]= p^{2n}$ for all positive integer $n$. This example has proved to be extremely useful in the construction of other examples of $\omega_0$-generated field extensions (of any finite irrationality degree).
In this paper, we characterize the extensions of finite irrationality degree which are $\omega_0$-generated.
In particular, in the case of unbounded irrationality degree, any modular extension of unbounded exponent contains a proper subfield of unbounded exponent over the ground field.
Finally, we give a generalization, illustrated by an example, of the $\omega_0$-generated to include modular purely inseparable extensions of unbounded irrationality degree.

References

  • M. F. Becker and S. MacLane, The minimum number of generators for inseparable algebraic extensions, Bull. Amer. Math. Soc., 46(2) (1940), 182-186.
  • N. Bourbaki, Algebre: Chapitres 1 a 3, Masson, Paris, 1970.
  • N. Bourbaki, Elements de Mathematique: Theorie des ensembles, Springer, Berlin, Heidelberg, 2006.
  • C. C. Chang and H. J. Keisler, Model Theory, North-Holland Publishing Co., Amsterdam-London, 1973.
  • M. Chellali and E. Fliouet, Sur la tour des clotures modulaires, An. St. Univ. Ovidius Constanta, Ser. Mat., 14(1) (2006), 45-66.
  • M. Chellali and E. Fliouet, Extensions purement inseparables d'exposant non borne, Arch. Math. (Brno), 40 (2004), 129-159.
  • M. Chellali and E. Fliouet, Sur les extensions purement inseparable, Arch. Math. (Basel), 81 (2003), 369-382.
  • J. K. Deveney, $\omega_0$-generated field extensions, Arch. Math. (Basel), 47 (1986), 410-412.
  • J. K. Deveney, An intermediate theory for a purely inseparable Galois theory, Trans. Amer. Math. Soc., 198 (1974), 287-295.
  • J. K. Deveney and J. N. Mordeson, Invariance in inseparable Galois theory, Rocky Mountain J Math., 9(3) (1979), 395-403.
  • R. Gilmer and W. Heinzer, Jonsson $\omega_0$-generated algebraic field extensions, Pacific J. Math., 128(1) (1987), 81-116.
  • R. Gilmer and W. Heinzer, Cardinality of generating sets for modules over a commutative ring, Math. Scand., 52 (1983), 41-57.
  • E. Fliouet, Absolutely lq-finite extensions, Acta Math. Vietnam., 44(3) (2019), 751-779.
  • E. Fliouet, Generalization of the lq-modular closure theorem and applications, Arch. Math. (Basel), 112 (2019), 361-370.
  • E. Fliouet, Generalization of quasi-modular extensions, In: A. Badawi, M.Vedadi, S. Yassemi, A. Yousefian Darani (eds), Homological and CombinatorialMethods in Algebra, Springer Proceedings in Mathematics and Statistics, 228(2018), 67-82.
  • M. Fried and M. Jarden, Field Arithmetic (third edition), Springer-Verlag, Berlin, 2008.
  • G. Karpilovsky, Topics in Field Theory, North-Holland Publishing Co., Amsterdam, 1989.
  • J. N. Mordeson and B. Vinograde, Structure of Arbitrary Purely Inseparable Extension Fields, Lecture Notes in Mathematics, Vol. 173, Springer-Verlag, Berlin-New York, 1970.
  • J. N. Mordeson and B. Vinograde, Generators and tensor factors of purely inseparable fields, Math. Z., 107 (1968), 326-334.
  • G. Pickert, Inseparable korpererweiterungen, Math. Z., 52 (1949), 81-136.
  • R. Rasala, Inseparable splitting theory, Trans. Amer. Math. Soc., 162 (1971), 411-448.
  • W. W. Shoultz, Chains of minimal generating sets in inseparable fields, OrderNo. 6904281, Iowa State University, Ann Arbor, 1968.
  • M. E. Sweedler, Structure of inseparable extensions, Ann. Math., 87 (1968), 401-410.
  • W. C. Waterhouse, The structure of inseparable field extensions, Trans. Amer.Math. Soc., 211 (1975), 39-56.
  • M. Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer. Math. Soc., 116 (1965), 435-469.
Year 2022, Volume: 31 Issue: 31, 100 - 120, 17.01.2022
https://doi.org/10.24330/ieja.1058420

Abstract

References

  • M. F. Becker and S. MacLane, The minimum number of generators for inseparable algebraic extensions, Bull. Amer. Math. Soc., 46(2) (1940), 182-186.
  • N. Bourbaki, Algebre: Chapitres 1 a 3, Masson, Paris, 1970.
  • N. Bourbaki, Elements de Mathematique: Theorie des ensembles, Springer, Berlin, Heidelberg, 2006.
  • C. C. Chang and H. J. Keisler, Model Theory, North-Holland Publishing Co., Amsterdam-London, 1973.
  • M. Chellali and E. Fliouet, Sur la tour des clotures modulaires, An. St. Univ. Ovidius Constanta, Ser. Mat., 14(1) (2006), 45-66.
  • M. Chellali and E. Fliouet, Extensions purement inseparables d'exposant non borne, Arch. Math. (Brno), 40 (2004), 129-159.
  • M. Chellali and E. Fliouet, Sur les extensions purement inseparable, Arch. Math. (Basel), 81 (2003), 369-382.
  • J. K. Deveney, $\omega_0$-generated field extensions, Arch. Math. (Basel), 47 (1986), 410-412.
  • J. K. Deveney, An intermediate theory for a purely inseparable Galois theory, Trans. Amer. Math. Soc., 198 (1974), 287-295.
  • J. K. Deveney and J. N. Mordeson, Invariance in inseparable Galois theory, Rocky Mountain J Math., 9(3) (1979), 395-403.
  • R. Gilmer and W. Heinzer, Jonsson $\omega_0$-generated algebraic field extensions, Pacific J. Math., 128(1) (1987), 81-116.
  • R. Gilmer and W. Heinzer, Cardinality of generating sets for modules over a commutative ring, Math. Scand., 52 (1983), 41-57.
  • E. Fliouet, Absolutely lq-finite extensions, Acta Math. Vietnam., 44(3) (2019), 751-779.
  • E. Fliouet, Generalization of the lq-modular closure theorem and applications, Arch. Math. (Basel), 112 (2019), 361-370.
  • E. Fliouet, Generalization of quasi-modular extensions, In: A. Badawi, M.Vedadi, S. Yassemi, A. Yousefian Darani (eds), Homological and CombinatorialMethods in Algebra, Springer Proceedings in Mathematics and Statistics, 228(2018), 67-82.
  • M. Fried and M. Jarden, Field Arithmetic (third edition), Springer-Verlag, Berlin, 2008.
  • G. Karpilovsky, Topics in Field Theory, North-Holland Publishing Co., Amsterdam, 1989.
  • J. N. Mordeson and B. Vinograde, Structure of Arbitrary Purely Inseparable Extension Fields, Lecture Notes in Mathematics, Vol. 173, Springer-Verlag, Berlin-New York, 1970.
  • J. N. Mordeson and B. Vinograde, Generators and tensor factors of purely inseparable fields, Math. Z., 107 (1968), 326-334.
  • G. Pickert, Inseparable korpererweiterungen, Math. Z., 52 (1949), 81-136.
  • R. Rasala, Inseparable splitting theory, Trans. Amer. Math. Soc., 162 (1971), 411-448.
  • W. W. Shoultz, Chains of minimal generating sets in inseparable fields, OrderNo. 6904281, Iowa State University, Ann Arbor, 1968.
  • M. E. Sweedler, Structure of inseparable extensions, Ann. Math., 87 (1968), 401-410.
  • W. C. Waterhouse, The structure of inseparable field extensions, Trans. Amer.Math. Soc., 211 (1975), 39-56.
  • M. Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer. Math. Soc., 116 (1965), 435-469.
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

El Hassane Flıouet This is me

Publication Date January 17, 2022
Published in Issue Year 2022 Volume: 31 Issue: 31

Cite

APA Flıouet, E. H. (2022). On $+\infty$-$\omega_0$-generated field extensions. International Electronic Journal of Algebra, 31(31), 100-120. https://doi.org/10.24330/ieja.1058420
AMA Flıouet EH. On $+\infty$-$\omega_0$-generated field extensions. IEJA. January 2022;31(31):100-120. doi:10.24330/ieja.1058420
Chicago Flıouet, El Hassane. “On $+\infty$-$\omega_0$-Generated Field Extensions”. International Electronic Journal of Algebra 31, no. 31 (January 2022): 100-120. https://doi.org/10.24330/ieja.1058420.
EndNote Flıouet EH (January 1, 2022) On $+\infty$-$\omega_0$-generated field extensions. International Electronic Journal of Algebra 31 31 100–120.
IEEE E. H. Flıouet, “On $+\infty$-$\omega_0$-generated field extensions”, IEJA, vol. 31, no. 31, pp. 100–120, 2022, doi: 10.24330/ieja.1058420.
ISNAD Flıouet, El Hassane. “On $+\infty$-$\omega_0$-Generated Field Extensions”. International Electronic Journal of Algebra 31/31 (January 2022), 100-120. https://doi.org/10.24330/ieja.1058420.
JAMA Flıouet EH. On $+\infty$-$\omega_0$-generated field extensions. IEJA. 2022;31:100–120.
MLA Flıouet, El Hassane. “On $+\infty$-$\omega_0$-Generated Field Extensions”. International Electronic Journal of Algebra, vol. 31, no. 31, 2022, pp. 100-2, doi:10.24330/ieja.1058420.
Vancouver Flıouet EH. On $+\infty$-$\omega_0$-generated field extensions. IEJA. 2022;31(31):100-2.