Research Article
BibTex RIS Cite
Year 2025, Early Access, 1 - 21
https://doi.org/10.24330/ieja.1488467

Abstract

References

  • H. Cuypers and J. I. Hall, The $3$-transposition groups with trivial center, J. Algebra, 178(1) (1995), 149-193.
  • T. De Medts and F. Rehren, Jordan algebras and $3$-transposition groups, J. Algebra, 478 (2017), 318-340.
  • T. De Medts, L. Rowen and Y. Segev, Primitive $4$-generated axial algebras of Jordan type, Proc. Amer. Math. Soc., 152(2) (2024), 537-551.
  • B. Fischer, A characterization of the symmetric groups on $4$ and $5$ letters, J. Algebra, 3 (1966), 88-98.
  • B. Fischer, Finite groups generated by $3$-transpositions. I., Invent. Math., 13 (1971), 232-246.
  • A. Galt, V. Joshi, A. Mamontov, S. Shpectorov and A. Staroletov, Double axes and subalgebras of Monster type in Matsuo algebras, Comm. Algebra, 49(10) (2021), 4208-4248.
  • The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.12.2, 2022. (https://www.gap-system.org).
  • I. Gorshkov and A. Staroletov, On primitive $3$-generated axial algebras of Jordan type, J. Algebra, 563 (2020), 74-99.
  • R. L. Griess, Jr., The friendly giant, Invent. Math., 69(1) (1982), 1-102.
  • J. I. Hall, The general theory of $3$-transposition groups, Math. Proc. Cambridge Philos. Soc., 114(2) (1993), 269-294.
  • J. I. Hall, F. Rehren and S. Shpectorov, Universal axial algebras and a theorem of Sakuma, J. Algebra, 421 (2015), 394-424.
  • J. I. Hall, F. Rehren and S. Shpectorov, Primitive axial algebras of Jordan type, J. Algebra, 437 (2015), 79-115.
  • J. I. Hall, Y. Segev and S. Shpectorov, Miyamoto involutions in axial algebras of Jordan type half, Israel J. Math., 223(1) (2018), 261-308.
  • J. I. Hall and S. Shpectorov, The spectra of finite $3$-transposition groups, Arab. J. Math., 10(3) (2021), 611-638.
  • J. I. Hall and L. H. Soicher, Presentations of some $3$-transposition groups, Comm. Algebra, 23(7) (1995), 2517-2559.
  • A. A. Ivanov, The Monster Group and Majorana Involutions, Cambridge Tracts in Math., 176, Cambridge University Press, 2009.
  • N. Jacobson, Some groups of transformations defined by Jordan algebras. II. Groups of type $F_4$, J. Reine Angew. Math., 204 (1960), 74-98.
  • S. M. S. Khasraw, J. Mclnroy and S. Shpectorov, On the structure of axial algebras, Trans. Amer. Math. Soc., 373(3) (2020), 2135-2156.
  • A. Mamontov and A. Staroletov, Axial algebras of Monster type $(2\eta,\eta)$ for $D$ diagrams. I, arXiv:2212.14608.
  • A. Matsuo, $3$-transposition groups of symplectic type and vertex operator algebras, J. Math. Soc. Japan, 57(3) (2005), 639-649.
  • K. McCrimmon, A Taste of Jordan Algebras, Universitext, Springer-Verlag, New York, 2004.
  • J. Mclnroy and S. Shpectorov, Axial algebras of Jordan and Monster type, arXiv:2209.08043.
  • B. H. Neumann, Groups whose elements have bounded orders, J. London Math. Soc., 12(3) (1937), 195-198.
  • R. A. Wilson, The Finite Simple Groups, Grad. Texts in Math., 251, Springer-Verlag London, Ltd., London, 2009.
  • T. Yabe, Jordan Matsuo algebras over fields of characteristic $3$, J. Algebra, 513 (2018), 91-98.
  • F. Zara, A first step toward the classification of Fischer groups, Geom. Dedicata, 25(1-3) (1988), 503-512.

On Jordan algebras that are factors of Matsuo algebras

Year 2025, Early Access, 1 - 21
https://doi.org/10.24330/ieja.1488467

Abstract

We describe all finite connected 3-transposition groups whose Matsuo algebras have nontrivial factors that are Jordan algebras. As a corollary, we show that if $\mathbb{F}$ is a field of characteristic 0, then there exist
infinitely many primitive axial algebras of Jordan type $\frac{1}{2}$ over $\mathbb{F}$ that are not factors of Matsuo algebras. As an example, we prove this for an exceptional Jordan algebra over~$\mathbb{F}$.

References

  • H. Cuypers and J. I. Hall, The $3$-transposition groups with trivial center, J. Algebra, 178(1) (1995), 149-193.
  • T. De Medts and F. Rehren, Jordan algebras and $3$-transposition groups, J. Algebra, 478 (2017), 318-340.
  • T. De Medts, L. Rowen and Y. Segev, Primitive $4$-generated axial algebras of Jordan type, Proc. Amer. Math. Soc., 152(2) (2024), 537-551.
  • B. Fischer, A characterization of the symmetric groups on $4$ and $5$ letters, J. Algebra, 3 (1966), 88-98.
  • B. Fischer, Finite groups generated by $3$-transpositions. I., Invent. Math., 13 (1971), 232-246.
  • A. Galt, V. Joshi, A. Mamontov, S. Shpectorov and A. Staroletov, Double axes and subalgebras of Monster type in Matsuo algebras, Comm. Algebra, 49(10) (2021), 4208-4248.
  • The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.12.2, 2022. (https://www.gap-system.org).
  • I. Gorshkov and A. Staroletov, On primitive $3$-generated axial algebras of Jordan type, J. Algebra, 563 (2020), 74-99.
  • R. L. Griess, Jr., The friendly giant, Invent. Math., 69(1) (1982), 1-102.
  • J. I. Hall, The general theory of $3$-transposition groups, Math. Proc. Cambridge Philos. Soc., 114(2) (1993), 269-294.
  • J. I. Hall, F. Rehren and S. Shpectorov, Universal axial algebras and a theorem of Sakuma, J. Algebra, 421 (2015), 394-424.
  • J. I. Hall, F. Rehren and S. Shpectorov, Primitive axial algebras of Jordan type, J. Algebra, 437 (2015), 79-115.
  • J. I. Hall, Y. Segev and S. Shpectorov, Miyamoto involutions in axial algebras of Jordan type half, Israel J. Math., 223(1) (2018), 261-308.
  • J. I. Hall and S. Shpectorov, The spectra of finite $3$-transposition groups, Arab. J. Math., 10(3) (2021), 611-638.
  • J. I. Hall and L. H. Soicher, Presentations of some $3$-transposition groups, Comm. Algebra, 23(7) (1995), 2517-2559.
  • A. A. Ivanov, The Monster Group and Majorana Involutions, Cambridge Tracts in Math., 176, Cambridge University Press, 2009.
  • N. Jacobson, Some groups of transformations defined by Jordan algebras. II. Groups of type $F_4$, J. Reine Angew. Math., 204 (1960), 74-98.
  • S. M. S. Khasraw, J. Mclnroy and S. Shpectorov, On the structure of axial algebras, Trans. Amer. Math. Soc., 373(3) (2020), 2135-2156.
  • A. Mamontov and A. Staroletov, Axial algebras of Monster type $(2\eta,\eta)$ for $D$ diagrams. I, arXiv:2212.14608.
  • A. Matsuo, $3$-transposition groups of symplectic type and vertex operator algebras, J. Math. Soc. Japan, 57(3) (2005), 639-649.
  • K. McCrimmon, A Taste of Jordan Algebras, Universitext, Springer-Verlag, New York, 2004.
  • J. Mclnroy and S. Shpectorov, Axial algebras of Jordan and Monster type, arXiv:2209.08043.
  • B. H. Neumann, Groups whose elements have bounded orders, J. London Math. Soc., 12(3) (1937), 195-198.
  • R. A. Wilson, The Finite Simple Groups, Grad. Texts in Math., 251, Springer-Verlag London, Ltd., London, 2009.
  • T. Yabe, Jordan Matsuo algebras over fields of characteristic $3$, J. Algebra, 513 (2018), 91-98.
  • F. Zara, A first step toward the classification of Fischer groups, Geom. Dedicata, 25(1-3) (1988), 503-512.
There are 26 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Ilya Gorshkov

Andrey Mamontov This is me

Alexey Staroletov This is me

Early Pub Date May 23, 2024
Publication Date
Published in Issue Year 2025 Early Access

Cite

APA Gorshkov, I., Mamontov, A., & Staroletov, A. (2024). On Jordan algebras that are factors of Matsuo algebras. International Electronic Journal of Algebra1-21. https://doi.org/10.24330/ieja.1488467
AMA Gorshkov I, Mamontov A, Staroletov A. On Jordan algebras that are factors of Matsuo algebras. IEJA. Published online May 1, 2024:1-21. doi:10.24330/ieja.1488467
Chicago Gorshkov, Ilya, Andrey Mamontov, and Alexey Staroletov. “On Jordan Algebras That Are Factors of Matsuo Algebras”. International Electronic Journal of Algebra, May (May 2024), 1-21. https://doi.org/10.24330/ieja.1488467.
EndNote Gorshkov I, Mamontov A, Staroletov A (May 1, 2024) On Jordan algebras that are factors of Matsuo algebras. International Electronic Journal of Algebra 1–21.
IEEE I. Gorshkov, A. Mamontov, and A. Staroletov, “On Jordan algebras that are factors of Matsuo algebras”, IEJA, pp. 1–21, May 2024, doi: 10.24330/ieja.1488467.
ISNAD Gorshkov, Ilya et al. “On Jordan Algebras That Are Factors of Matsuo Algebras”. International Electronic Journal of Algebra. May 2024. 1-21. https://doi.org/10.24330/ieja.1488467.
JAMA Gorshkov I, Mamontov A, Staroletov A. On Jordan algebras that are factors of Matsuo algebras. IEJA. 2024;:1–21.
MLA Gorshkov, Ilya et al. “On Jordan Algebras That Are Factors of Matsuo Algebras”. International Electronic Journal of Algebra, 2024, pp. 1-21, doi:10.24330/ieja.1488467.
Vancouver Gorshkov I, Mamontov A, Staroletov A. On Jordan algebras that are factors of Matsuo algebras. IEJA. 2024:1-21.