Research Article
BibTex RIS Cite
Year 2025, Early Access, 1 - 45
https://doi.org/10.24330/ieja.1608563

Abstract

References

  • T. Benes and D. Burde, Degenerations of pre-Lie algebras, J. Math. Phys., 50(11) (2009), 112102 (9 pp).
  • D. J. Broadhurst and D. Kreimer, Towards cohomology of renormalization: bigrading the combinatorial Hopf algebra of rooted trees, Comm. Math. Phys., 215(1) (2000), 217-236.
  • A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., 199(1) (1998), 203-242.
  • L. Foissy, Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra, 255(1) (2002), 89-120.
  • L. Foissy, The Hopf algebra of Fliess operators and its dual pre-Lie algebra, Comm. Algebra, 43(10) (2015), 4528-4552.
  • L. Foissy, A pre-Lie algebra associated to a linear endomorphism and related algebraic structures, Eur. J. Math., 1(1) (2015), 78-121.
  • W. S. Gray and L. A. Duffaut Espinosa, A Faa di Bruno Hopf algebra for a group of Fliess operators with applications to feedback}, Systems Control Lett., 60(7) (2011), 441-449.
  • M. Livernet, A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra, 207(1) (2006), 1-18.
  • J.-L. Loday, Splitting associativity and Hopf algebras, Actes des journees mathematiques a la memoire de Jean Leray, Soc. Math. France, Paris, Semin. Congr., 9 (2004), 155-172.
  • J.-L. Loday and M. Ronco, On the structure of cofree Hopf algebras, J. Reine Angew. Math., 592 (2006), 123-155.
  • J.-L. Loday and M. Ronco, Combinatorial Hopf algebras, Quanta of maths, Clay Math. Proc., Amer. Math. Soc., Providence, RI, 11 (2010), 347-383.
  • J.-M. Oudom and D. Guin, Sur l'algebre enveloppante d'une algebre pre-Lie, C. R. Math. Acad. Sci. Paris, 340(5) (2005), 331-336.
  • J.-M. Oudom and D. Guin, On the Lie enveloping algebra of a pre-Lie algebra, J. \(K\)-Theory., 2(1) (2008), 147-167.
  • N. J. A. Sloane, The on-line encyclopedia of integer sequences, \url{https://oeis.org/}.

Cofree Com-PreLie algebras

Year 2025, Early Access, 1 - 45
https://doi.org/10.24330/ieja.1608563

Abstract

A Com-PreLie bialgebra is a commutative bialgebra with an extra preLie product satisfying some compatibilities with the product and the coproduct. We here give examples of cofree Com-PreLie bialgebras, including all the ones such that the preLie product is homogeneous of degree $\geq -1$. We also give a graphical description of free unitary Com-PreLie algebras, explicit their canonical bialgebra structure and exhibit with the help of a rigidity theorem certain cofree quotients, including the Connes-Kreimer Hopf algebra of rooted trees. We finally prove that the dual of these bialgebras are also enveloping algebras of preLie algebras, combinatorially described.

References

  • T. Benes and D. Burde, Degenerations of pre-Lie algebras, J. Math. Phys., 50(11) (2009), 112102 (9 pp).
  • D. J. Broadhurst and D. Kreimer, Towards cohomology of renormalization: bigrading the combinatorial Hopf algebra of rooted trees, Comm. Math. Phys., 215(1) (2000), 217-236.
  • A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., 199(1) (1998), 203-242.
  • L. Foissy, Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra, 255(1) (2002), 89-120.
  • L. Foissy, The Hopf algebra of Fliess operators and its dual pre-Lie algebra, Comm. Algebra, 43(10) (2015), 4528-4552.
  • L. Foissy, A pre-Lie algebra associated to a linear endomorphism and related algebraic structures, Eur. J. Math., 1(1) (2015), 78-121.
  • W. S. Gray and L. A. Duffaut Espinosa, A Faa di Bruno Hopf algebra for a group of Fliess operators with applications to feedback}, Systems Control Lett., 60(7) (2011), 441-449.
  • M. Livernet, A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra, 207(1) (2006), 1-18.
  • J.-L. Loday, Splitting associativity and Hopf algebras, Actes des journees mathematiques a la memoire de Jean Leray, Soc. Math. France, Paris, Semin. Congr., 9 (2004), 155-172.
  • J.-L. Loday and M. Ronco, On the structure of cofree Hopf algebras, J. Reine Angew. Math., 592 (2006), 123-155.
  • J.-L. Loday and M. Ronco, Combinatorial Hopf algebras, Quanta of maths, Clay Math. Proc., Amer. Math. Soc., Providence, RI, 11 (2010), 347-383.
  • J.-M. Oudom and D. Guin, Sur l'algebre enveloppante d'une algebre pre-Lie, C. R. Math. Acad. Sci. Paris, 340(5) (2005), 331-336.
  • J.-M. Oudom and D. Guin, On the Lie enveloping algebra of a pre-Lie algebra, J. \(K\)-Theory., 2(1) (2008), 147-167.
  • N. J. A. Sloane, The on-line encyclopedia of integer sequences, \url{https://oeis.org/}.
There are 14 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Loïc Foissy

Early Pub Date December 27, 2024
Publication Date
Submission Date May 31, 2024
Acceptance Date November 3, 2024
Published in Issue Year 2025 Early Access

Cite

APA Foissy, L. (2024). Cofree Com-PreLie algebras. International Electronic Journal of Algebra1-45. https://doi.org/10.24330/ieja.1608563
AMA Foissy L. Cofree Com-PreLie algebras. IEJA. Published online December 1, 2024:1-45. doi:10.24330/ieja.1608563
Chicago Foissy, Loïc. “Cofree Com-PreLie Algebras”. International Electronic Journal of Algebra, December (December 2024), 1-45. https://doi.org/10.24330/ieja.1608563.
EndNote Foissy L (December 1, 2024) Cofree Com-PreLie algebras. International Electronic Journal of Algebra 1–45.
IEEE L. Foissy, “Cofree Com-PreLie algebras”, IEJA, pp. 1–45, December 2024, doi: 10.24330/ieja.1608563.
ISNAD Foissy, Loïc. “Cofree Com-PreLie Algebras”. International Electronic Journal of Algebra. December 2024. 1-45. https://doi.org/10.24330/ieja.1608563.
JAMA Foissy L. Cofree Com-PreLie algebras. IEJA. 2024;:1–45.
MLA Foissy, Loïc. “Cofree Com-PreLie Algebras”. International Electronic Journal of Algebra, 2024, pp. 1-45, doi:10.24330/ieja.1608563.
Vancouver Foissy L. Cofree Com-PreLie algebras. IEJA. 2024:1-45.