Research Article
BibTex RIS Cite
Year 2025, Early Access, 1 - 13
https://doi.org/10.24330/ieja.1611483

Abstract

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition, Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.
  • M. Behboodi, A. Moradzadeh-Dehkordi and M. Qourchi Nejadi, Virtually uniserial modules and rings, J. Algebra, 549 (2020), 365-385.
  • A. K. Chaturvedi, On iso-retractable modules and rings, In: S. Rizvi, A. Ali, V. D. Filippis (eds), Algebra and its Applications, Springer Proc. Math. Stat., Springer, Singapore, 174 (2016), 381-385.
  • A. K. Chaturvedi, Iso-retractable modules and rings, Asian-Eur. J. Math., 12(1) (2019), 1950013 (7 pp).
  • A. K. Chaturvedi and N. Kumar, Iso-c-retractable modules and rings, Palest. J. Math., 11 (2022), 158-164.
  • A. K. Chaturvedi and N. Kumar, Modules with finitely many small submodules, Asian-Eur. J. Math., 16(1) (2023), 2350005 (14 pp).
  • A. K. Chaturvedi, S. Kumar, S. Prakash and N. Kumar, Essentially iso-retractable modules and rings, Carpathian Math. Publ., 14(1) (2022), 76-85.
  • A. Facchini and Z. Nazemian, Modules with chain conditions up to isomorphism, J. Algebra, 453 (2016), 578-601.
  • C. Faith, Algebra: Rings, Modules, and Categories-I, Die Grundlehren der mathematischen Wissenschaften, Band 190, Springer-Verlag, New York-Heidelberg, 1973.
  • A. Ghorbani and A. Haghany, Generalized Hopfian modules, J. Algebra, 255(2) (2002), 324-341.
  • E. Kaynar, H. Calisici and E. Turkmen, SS-supplemented modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 473-485.
  • S. M. Khuri, Endomorphism rings and lattice isomorphisms, J. Algebra, 56(2) (1979), 401-408.
  • G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart modules, Comm. Algebra, 39(11) (2011), 4036-4058.
  • S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990.
  • R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.

Iso-retractability of modules related to small submodules

Year 2025, Early Access, 1 - 13
https://doi.org/10.24330/ieja.1611483

Abstract

We study the notion of small iso-retractable modules. We prove that a small iso-retractable module is either $J$-semisimple or iso-retractable (iso-simple). Further, we prove that a ring $R$ is a left V-ring if and only if every left $R$-module is small iso-retractable. Also, we give a new characterization of semisimple modules in terms of small iso-retractable modules.

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition, Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.
  • M. Behboodi, A. Moradzadeh-Dehkordi and M. Qourchi Nejadi, Virtually uniserial modules and rings, J. Algebra, 549 (2020), 365-385.
  • A. K. Chaturvedi, On iso-retractable modules and rings, In: S. Rizvi, A. Ali, V. D. Filippis (eds), Algebra and its Applications, Springer Proc. Math. Stat., Springer, Singapore, 174 (2016), 381-385.
  • A. K. Chaturvedi, Iso-retractable modules and rings, Asian-Eur. J. Math., 12(1) (2019), 1950013 (7 pp).
  • A. K. Chaturvedi and N. Kumar, Iso-c-retractable modules and rings, Palest. J. Math., 11 (2022), 158-164.
  • A. K. Chaturvedi and N. Kumar, Modules with finitely many small submodules, Asian-Eur. J. Math., 16(1) (2023), 2350005 (14 pp).
  • A. K. Chaturvedi, S. Kumar, S. Prakash and N. Kumar, Essentially iso-retractable modules and rings, Carpathian Math. Publ., 14(1) (2022), 76-85.
  • A. Facchini and Z. Nazemian, Modules with chain conditions up to isomorphism, J. Algebra, 453 (2016), 578-601.
  • C. Faith, Algebra: Rings, Modules, and Categories-I, Die Grundlehren der mathematischen Wissenschaften, Band 190, Springer-Verlag, New York-Heidelberg, 1973.
  • A. Ghorbani and A. Haghany, Generalized Hopfian modules, J. Algebra, 255(2) (2002), 324-341.
  • E. Kaynar, H. Calisici and E. Turkmen, SS-supplemented modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 473-485.
  • S. M. Khuri, Endomorphism rings and lattice isomorphisms, J. Algebra, 56(2) (1979), 401-408.
  • G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart modules, Comm. Algebra, 39(11) (2011), 4036-4058.
  • S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990.
  • R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
There are 15 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Nirbhay Kumar

Avanish Chaturvedi

Early Pub Date January 1, 2025
Publication Date
Submission Date August 26, 2024
Acceptance Date December 13, 2024
Published in Issue Year 2025 Early Access

Cite

APA Kumar, N., & Chaturvedi, A. (2025). Iso-retractability of modules related to small submodules. International Electronic Journal of Algebra1-13. https://doi.org/10.24330/ieja.1611483
AMA Kumar N, Chaturvedi A. Iso-retractability of modules related to small submodules. IEJA. Published online January 1, 2025:1-13. doi:10.24330/ieja.1611483
Chicago Kumar, Nirbhay, and Avanish Chaturvedi. “Iso-Retractability of Modules Related to Small Submodules”. International Electronic Journal of Algebra, January (January 2025), 1-13. https://doi.org/10.24330/ieja.1611483.
EndNote Kumar N, Chaturvedi A (January 1, 2025) Iso-retractability of modules related to small submodules. International Electronic Journal of Algebra 1–13.
IEEE N. Kumar and A. Chaturvedi, “Iso-retractability of modules related to small submodules”, IEJA, pp. 1–13, January 2025, doi: 10.24330/ieja.1611483.
ISNAD Kumar, Nirbhay - Chaturvedi, Avanish. “Iso-Retractability of Modules Related to Small Submodules”. International Electronic Journal of Algebra. January 2025. 1-13. https://doi.org/10.24330/ieja.1611483.
JAMA Kumar N, Chaturvedi A. Iso-retractability of modules related to small submodules. IEJA. 2025;:1–13.
MLA Kumar, Nirbhay and Avanish Chaturvedi. “Iso-Retractability of Modules Related to Small Submodules”. International Electronic Journal of Algebra, 2025, pp. 1-13, doi:10.24330/ieja.1611483.
Vancouver Kumar N, Chaturvedi A. Iso-retractability of modules related to small submodules. IEJA. 2025:1-13.