Year 2025,
Early Access, 1 - 13
Nirbhay Kumar
,
Avanish Chaturvedi
References
- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition, Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.
- M. Behboodi, A. Moradzadeh-Dehkordi and M. Qourchi Nejadi, Virtually uniserial modules and rings, J. Algebra, 549 (2020), 365-385.
- A. K. Chaturvedi, On iso-retractable modules and rings, In: S. Rizvi, A. Ali, V. D. Filippis (eds), Algebra and its Applications, Springer Proc. Math. Stat., Springer, Singapore, 174 (2016), 381-385.
- A. K. Chaturvedi, Iso-retractable modules and rings, Asian-Eur. J. Math., 12(1) (2019), 1950013 (7 pp).
- A. K. Chaturvedi and N. Kumar, Iso-c-retractable modules and rings, Palest. J. Math., 11 (2022), 158-164.
- A. K. Chaturvedi and N. Kumar, Modules with finitely many small submodules, Asian-Eur. J. Math., 16(1) (2023), 2350005 (14 pp).
- A. K. Chaturvedi, S. Kumar, S. Prakash and N. Kumar, Essentially iso-retractable modules and rings, Carpathian Math. Publ., 14(1) (2022), 76-85.
- A. Facchini and Z. Nazemian, Modules with chain conditions up to isomorphism, J. Algebra, 453 (2016), 578-601.
- C. Faith, Algebra: Rings, Modules, and Categories-I, Die Grundlehren der mathematischen Wissenschaften, Band 190, Springer-Verlag, New York-Heidelberg, 1973.
- A. Ghorbani and A. Haghany, Generalized Hopfian modules, J. Algebra, 255(2) (2002), 324-341.
- E. Kaynar, H. Calisici and E. Turkmen, SS-supplemented modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 473-485.
- S. M. Khuri, Endomorphism rings and lattice isomorphisms, J. Algebra, 56(2) (1979), 401-408.
- G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart modules, Comm. Algebra, 39(11) (2011), 4036-4058.
- S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990.
- R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
Iso-retractability of modules related to small submodules
Year 2025,
Early Access, 1 - 13
Nirbhay Kumar
,
Avanish Chaturvedi
Abstract
We study the notion of small iso-retractable modules. We prove that a small iso-retractable module is either $J$-semisimple or iso-retractable (iso-simple). Further, we prove that a ring $R$ is a left V-ring if and only if every left $R$-module is small iso-retractable. Also, we give a new characterization of semisimple modules in terms of small iso-retractable modules.
References
- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition, Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.
- M. Behboodi, A. Moradzadeh-Dehkordi and M. Qourchi Nejadi, Virtually uniserial modules and rings, J. Algebra, 549 (2020), 365-385.
- A. K. Chaturvedi, On iso-retractable modules and rings, In: S. Rizvi, A. Ali, V. D. Filippis (eds), Algebra and its Applications, Springer Proc. Math. Stat., Springer, Singapore, 174 (2016), 381-385.
- A. K. Chaturvedi, Iso-retractable modules and rings, Asian-Eur. J. Math., 12(1) (2019), 1950013 (7 pp).
- A. K. Chaturvedi and N. Kumar, Iso-c-retractable modules and rings, Palest. J. Math., 11 (2022), 158-164.
- A. K. Chaturvedi and N. Kumar, Modules with finitely many small submodules, Asian-Eur. J. Math., 16(1) (2023), 2350005 (14 pp).
- A. K. Chaturvedi, S. Kumar, S. Prakash and N. Kumar, Essentially iso-retractable modules and rings, Carpathian Math. Publ., 14(1) (2022), 76-85.
- A. Facchini and Z. Nazemian, Modules with chain conditions up to isomorphism, J. Algebra, 453 (2016), 578-601.
- C. Faith, Algebra: Rings, Modules, and Categories-I, Die Grundlehren der mathematischen Wissenschaften, Band 190, Springer-Verlag, New York-Heidelberg, 1973.
- A. Ghorbani and A. Haghany, Generalized Hopfian modules, J. Algebra, 255(2) (2002), 324-341.
- E. Kaynar, H. Calisici and E. Turkmen, SS-supplemented modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 473-485.
- S. M. Khuri, Endomorphism rings and lattice isomorphisms, J. Algebra, 56(2) (1979), 401-408.
- G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart modules, Comm. Algebra, 39(11) (2011), 4036-4058.
- S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990.
- R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.