Year 2025,
Early Access, 1 - 16
Sebastian Higuera
Armando Reyes
References
- S. A. Annin, Associated and Attached Primes over Noncommutative Rings, Ph.D. Thesis, University of California, Berkeley, 2002.
- S. A. Annin, Associated primes over Ore extension rings, J. Algebra Appl., 3(2) (2004), 193-205.
- S. A. Annin, Couniform dimension over skew polynomial rings, Comm. Algebra, 33(4) (2005), 1195-1204.
- S. A. Annin, Attached primes under skew polynomial extensions, J. Algebra Appl., 10(3) (2011), 537-547.
- A. D. Bell and K. R. Goodearl, Uniform rank over differential operator rings and Poincare-Birkhoff-Witt extensions, Pacific J. Math., 131(1) (1988), 13-37.
- P. A. A. B. Carvalho, S. A. Lopes and J. Matczuk, Double Ore extensions versus iterated Ore extensions, Comm. Algebra, 39(8) (2011), 2838-2848.
- A. Chacon and A. Reyes, On the schematicness of some Ore polynomials of higher order generated by homogenous quadratic relations, J. Algebra Appl., (2025), 2550207 (19 pp).
- P. M. Cohn, Quadratic extensions of skew fields, Proc. London Math. Soc. (3), 11 (1961), 531-556.
- R. Diaz and E. Pariguan, On the $q$-meromorphic Weyl algebra, Sao Paulo J. Math. Sci., 3(2) (2009), 283-298.
- F. Dumas, Sous-corps de fractions rationnelles des corps gauches de series de Laurent, Topics in Invariant Theory, Lecture Notes in Math., Springer, Berlin, 1478 (1991), 192-214.
- C. Faith, Rings whose modules have maximal submodules, Publ. Mat., 39(1) (1995), 201-214.
- W. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suarez and H. Venegas, Skew PBW Extensions: Ring and Module-Theoretic Properties, Matrix and Gröbner Methods, and Applications, Algebra and Applications, 28, Springer, Cham, 2020.
- G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, 136, Invariant Theory and Algebraic Transformation Groups, VII, Springer-Verlag, Berlin, 2006.
- C. Gallego and O. Lezama, Gröbner bases for ideals of $\sigma$-PBW extensions, Comm. Algebra, 39(1) (2011), 50-75.
- A. V. Golovashkin and V. M. Maksimov, On algebras of skew polynomials generated by quadratic homogeneous relations, J. Math. Sci. (N.Y.), 129(2) (2005), 3757-3771.
- K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Second edition, London Mathematical Society Student Texts, 61, Cambridge University Press, Cambridge, 2004.
- P. Grzeszczuk, Goldie dimension of differential operator rings, Comm. Algebra, 16(4) (1988), 689-701.
- E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar., 107(3) (2005), 207-224.
- S. Higuera and A. Reyes, Attached prime ideals over skew Ore polynomials, Comm. Algebra, (2024), https://doi.org/10.1080/00927872.2024.2400578.
- D. A. Jordan, The graded algebra generated by two Eulerian derivatives, Algebr. Represent. Theory, 4(3) (2001), 249-275.
- T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
- T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999.
- A. Leroy and J. Matczuk, On induced modules over Ore extensions, Comm. Algebra, 32(7) (2004), 2743-2766.
- A. Leroy and J. Matczuk, Goldie conditions for Ore extensions over semiprime rings, Algebr. Represent. Theory, 8(5) (2005), 679-688.
- S. A. Lopes, Noncommutative algebra and representation theory: symmetry, structure & invariants, Commun. Math., 32(3) (2024), 63-117.
- V. M. Maksimov, On a generalization of the ring of skew Ore polynomials, Russian Math. Surveys, 55(4) (2000), 817-818.
- J. Matczuk, Goldie rank of Ore extensions, Comm. Algebra, 23(4) (1995), 1455-1471.
- A. Nino, M. C. Ramirez and A. Reyes, A first approach to the Burchnall-Chaundy theory for quadratic algebras having PBW bases, (2024), arXiv:2401.10023v1 [math.RA].
- A. Nino and A. Reyes, On centralizers and pseudo-multidegree functions for non-commutative rings having PBW bases, J. Algebra Appl., (2025), 2550109 (21 pp).
- O. Ore, Linear equations in non-commutative fields, Ann. of Math. (2), 32(3) (1931), 463-477.
- O. Ore, Theory of non-commutative polynomials, Ann. of Math. (2), 34(3) (1933), 480-508.
- D. Quinn, Embeddings of differential operator rings and Goldie dimension, Proc. Amer. Math. Soc., 102(1) (1988), 9-16.
- M. C. Ramirez and A. Reyes, A view toward homomorphisms and cv-polynomials between double Ore extensions, (2024), arXiv:2401.14162v1 [math.RA].
- B. Sarath and K. Varadarajan, Dual Goldie dimension II, Comm. Algebra, 7(17) (1979), 1885-1899.
- R. C. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math., 42(1) (1972), 251-257.
- T. H. M. Smits, Skew polynomial rings, Indag. Math. (N.S.), 30(1) (1968), 209-224.
- K. Varadarajan, Dual Goldie dimension, Comm. Algebra, 7(6) (1979), 565-610.
- J. J. Zhang and J. Zhang, Double Ore extensions, J. Pure Appl. Algebra, 212(12) (2008), 2668-2690.
- J. J. Zhang and J. Zhang, Double extension regular algebras of type (14641), J. Algebra, 322(2) (2009), 373-409.
Uniform and couniform dimensions of inverse polynomial modules over skew Ore polynomials
Year 2025,
Early Access, 1 - 16
Sebastian Higuera
Armando Reyes
Abstract
In this paper, we study the uniform and couniform dimensions of inverse polynomial modules over skew Ore polynomials.
References
- S. A. Annin, Associated and Attached Primes over Noncommutative Rings, Ph.D. Thesis, University of California, Berkeley, 2002.
- S. A. Annin, Associated primes over Ore extension rings, J. Algebra Appl., 3(2) (2004), 193-205.
- S. A. Annin, Couniform dimension over skew polynomial rings, Comm. Algebra, 33(4) (2005), 1195-1204.
- S. A. Annin, Attached primes under skew polynomial extensions, J. Algebra Appl., 10(3) (2011), 537-547.
- A. D. Bell and K. R. Goodearl, Uniform rank over differential operator rings and Poincare-Birkhoff-Witt extensions, Pacific J. Math., 131(1) (1988), 13-37.
- P. A. A. B. Carvalho, S. A. Lopes and J. Matczuk, Double Ore extensions versus iterated Ore extensions, Comm. Algebra, 39(8) (2011), 2838-2848.
- A. Chacon and A. Reyes, On the schematicness of some Ore polynomials of higher order generated by homogenous quadratic relations, J. Algebra Appl., (2025), 2550207 (19 pp).
- P. M. Cohn, Quadratic extensions of skew fields, Proc. London Math. Soc. (3), 11 (1961), 531-556.
- R. Diaz and E. Pariguan, On the $q$-meromorphic Weyl algebra, Sao Paulo J. Math. Sci., 3(2) (2009), 283-298.
- F. Dumas, Sous-corps de fractions rationnelles des corps gauches de series de Laurent, Topics in Invariant Theory, Lecture Notes in Math., Springer, Berlin, 1478 (1991), 192-214.
- C. Faith, Rings whose modules have maximal submodules, Publ. Mat., 39(1) (1995), 201-214.
- W. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suarez and H. Venegas, Skew PBW Extensions: Ring and Module-Theoretic Properties, Matrix and Gröbner Methods, and Applications, Algebra and Applications, 28, Springer, Cham, 2020.
- G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, 136, Invariant Theory and Algebraic Transformation Groups, VII, Springer-Verlag, Berlin, 2006.
- C. Gallego and O. Lezama, Gröbner bases for ideals of $\sigma$-PBW extensions, Comm. Algebra, 39(1) (2011), 50-75.
- A. V. Golovashkin and V. M. Maksimov, On algebras of skew polynomials generated by quadratic homogeneous relations, J. Math. Sci. (N.Y.), 129(2) (2005), 3757-3771.
- K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Second edition, London Mathematical Society Student Texts, 61, Cambridge University Press, Cambridge, 2004.
- P. Grzeszczuk, Goldie dimension of differential operator rings, Comm. Algebra, 16(4) (1988), 689-701.
- E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar., 107(3) (2005), 207-224.
- S. Higuera and A. Reyes, Attached prime ideals over skew Ore polynomials, Comm. Algebra, (2024), https://doi.org/10.1080/00927872.2024.2400578.
- D. A. Jordan, The graded algebra generated by two Eulerian derivatives, Algebr. Represent. Theory, 4(3) (2001), 249-275.
- T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
- T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999.
- A. Leroy and J. Matczuk, On induced modules over Ore extensions, Comm. Algebra, 32(7) (2004), 2743-2766.
- A. Leroy and J. Matczuk, Goldie conditions for Ore extensions over semiprime rings, Algebr. Represent. Theory, 8(5) (2005), 679-688.
- S. A. Lopes, Noncommutative algebra and representation theory: symmetry, structure & invariants, Commun. Math., 32(3) (2024), 63-117.
- V. M. Maksimov, On a generalization of the ring of skew Ore polynomials, Russian Math. Surveys, 55(4) (2000), 817-818.
- J. Matczuk, Goldie rank of Ore extensions, Comm. Algebra, 23(4) (1995), 1455-1471.
- A. Nino, M. C. Ramirez and A. Reyes, A first approach to the Burchnall-Chaundy theory for quadratic algebras having PBW bases, (2024), arXiv:2401.10023v1 [math.RA].
- A. Nino and A. Reyes, On centralizers and pseudo-multidegree functions for non-commutative rings having PBW bases, J. Algebra Appl., (2025), 2550109 (21 pp).
- O. Ore, Linear equations in non-commutative fields, Ann. of Math. (2), 32(3) (1931), 463-477.
- O. Ore, Theory of non-commutative polynomials, Ann. of Math. (2), 34(3) (1933), 480-508.
- D. Quinn, Embeddings of differential operator rings and Goldie dimension, Proc. Amer. Math. Soc., 102(1) (1988), 9-16.
- M. C. Ramirez and A. Reyes, A view toward homomorphisms and cv-polynomials between double Ore extensions, (2024), arXiv:2401.14162v1 [math.RA].
- B. Sarath and K. Varadarajan, Dual Goldie dimension II, Comm. Algebra, 7(17) (1979), 1885-1899.
- R. C. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math., 42(1) (1972), 251-257.
- T. H. M. Smits, Skew polynomial rings, Indag. Math. (N.S.), 30(1) (1968), 209-224.
- K. Varadarajan, Dual Goldie dimension, Comm. Algebra, 7(6) (1979), 565-610.
- J. J. Zhang and J. Zhang, Double Ore extensions, J. Pure Appl. Algebra, 212(12) (2008), 2668-2690.
- J. J. Zhang and J. Zhang, Double extension regular algebras of type (14641), J. Algebra, 322(2) (2009), 373-409.