Research Article
BibTex RIS Cite

On regularly coherent modules and regularly Noetherian modules

Year 2025, Early Access, 1 - 27
https://doi.org/10.24330/ieja.1767099

Abstract

The concepts of regular Noetherianity and regular coherence, which extend the classical notions of Noetherian and coherent rings, have been fundamental in the study of algebraic structures. In this paper, we aim to expand these notions to the realm of module theory. Specifically, we introduce and explore weak versions of injective, flat, and projective modules, which we term as reg-injective, reg-flat, and reg-projective modules. We provide analogues of classical results and establish their properties, offering examples to illustrate modules that meet these new criteria but not their classical counterparts. Additionally, we define and study regularly Noetherian and regularly coherent modules, characterizing their properties and examining their stability under various ring constructions. Our results contribute new examples and broaden the current understanding of these algebraic concepts.

References

  • D. D. Anderson, The Krull intersection theorem, Pacific J. Math., 57(1) (1975), 11-14.
  • S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc., 97 (1960), 457-473.
  • J. Chen and N. Ding, On $n$-coherent rings, Comm. Algebra, 24(10) (1996), 3211-3216.
  • M. Chhiti and S. E. Mahdou, Rings in which every regular ideal is finitely generated, Moroc. J. Algebra Geom. Appl., 2(2) (2023), 218-225.
  • M. Chhiti and S. E. Mahdou, When every finitely generated regular ideal is finitely presented, Commun. Korean Math. Soc., 39(2) (2024), 363-372.
  • J. Elliott, Rings, Modules, and Closure Operations, Springer Monographs in Mathematics, Springer, Cham, 2019.
  • E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000.
  • S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
  • T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999.
  • E. Matlis, Commutative coherent rings, Canadian J. Math., 34(6) (1982), 1240-1244.
  • W. Qi and X. L. Zhang, The homological properties of regular injective modules, Commun. Korean Math. Soc., 39(1) (2024), 59-69.
  • B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc., 2(2) (1970), 323-329.
  • B. Stenstrom, Rings of Quotients, An introduction to methods of ring theory, Die Grundlehren der Mathematischen Wissenschaften, 217, Springer-Verlag, New York-Heidelberg, 1975.
  • F. G. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Algebra and Applications, 22, Springer, Singapore, 2016.
  • F. G. Wang and J. L. Liao, $S$-injective modules and $S$-injective envelopes, Acta Math. Sinica (Chinese Ser.), 54(2) (2011), 271-284.
  • X. L. Xiao, F. G. Wang and S. Y. Lin, The coherence study determined by regular ideals, J. Sichuan Normal Univ., 45(1) (2022), 33-40.
  • X. L. Zhang, Characterizing $S$-flat modules and $S$-von Neumann regular rings by uniformity, Bull. Korean Math. Soc., 59(3) (2022), 643-657.
  • X. L. Zhang, On $\tau_q$-projectivity and $\tau_q$-simplicity, (2023), arXiv:2302.04560 [math.AC].
There are 18 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Younes El Haddaoui

Hwankoo Kım

Najib Mahdou

Early Pub Date August 16, 2025
Publication Date October 20, 2025
Submission Date February 4, 2025
Acceptance Date June 2, 2025
Published in Issue Year 2025 Early Access

Cite

APA El Haddaoui, Y., Kım, H., & Mahdou, N. (2025). On regularly coherent modules and regularly Noetherian modules. International Electronic Journal of Algebra1-27. https://doi.org/10.24330/ieja.1767099
AMA El Haddaoui Y, Kım H, Mahdou N. On regularly coherent modules and regularly Noetherian modules. IEJA. Published online August 1, 2025:1-27. doi:10.24330/ieja.1767099
Chicago El Haddaoui, Younes, Hwankoo Kım, and Najib Mahdou. “On Regularly Coherent Modules and Regularly Noetherian Modules”. International Electronic Journal of Algebra, August (August 2025), 1-27. https://doi.org/10.24330/ieja.1767099.
EndNote El Haddaoui Y, Kım H, Mahdou N (August 1, 2025) On regularly coherent modules and regularly Noetherian modules. International Electronic Journal of Algebra 1–27.
IEEE Y. El Haddaoui, H. Kım, and N. Mahdou, “On regularly coherent modules and regularly Noetherian modules”, IEJA, pp. 1–27, August2025, doi: 10.24330/ieja.1767099.
ISNAD El Haddaoui, Younes et al. “On Regularly Coherent Modules and Regularly Noetherian Modules”. International Electronic Journal of Algebra. August2025. 1-27. https://doi.org/10.24330/ieja.1767099.
JAMA El Haddaoui Y, Kım H, Mahdou N. On regularly coherent modules and regularly Noetherian modules. IEJA. 2025;:1–27.
MLA El Haddaoui, Younes et al. “On Regularly Coherent Modules and Regularly Noetherian Modules”. International Electronic Journal of Algebra, 2025, pp. 1-27, doi:10.24330/ieja.1767099.
Vancouver El Haddaoui Y, Kım H, Mahdou N. On regularly coherent modules and regularly Noetherian modules. IEJA. 2025:1-27.