Research Article
BibTex RIS Cite

$(m,n)$-$C2$ modules and $(m,n)$-$D2$ modules

Year 2025, Early Access, 1 - 14
https://doi.org/10.24330/ieja.1767105

Abstract

We study the concept of $(m,n)$-$C2$ modules with $m,n$ positive integers, which unifies strongly $C2$, $n$-$C2$ and $GC2$ modules. Several characterizations are obtained. It is shown that $R^{(\mathbb{N})}$ is $(m,n)$-$C2$ as a right $R$-module if and only if $R$ is right perfect and right strongly $C2$. Connections between an $(m,n)$-$C2$ module and its endomorphism ring are also studied. We prove that if the endomorphism ring of an $R$-module $M$ is a right $(m,n)$-$C2$ ring, then $M$ is an $(m,n)$-$C2$ module. Also we obtain some dual statements of $(m,n)$-$D2$ modules. Some characterizations of (semi)perfect and (semi)regular rings are studied. We show that $S=End(M_R)$ is a regular ring if and only if $M$ is a dual Rickart module and $(m,n)$-$D2$ with $m> n$.

References

  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, 13, Springer-Verlag, New York-Heidelberg, 1974.
  • F. Karabacak, M. T. Kosan, T. C. Quynh, D. D. Tai and O. Tasdemir, On NCS modules and rings, Comm. Algebra, 48(12) (2020), 5236-5246.
  • F. Karabacak, M. T. Kosan, T. C. Quynh and O. Tasdemir, On modules and rings in which complements are isomorphic to direct summands, Comm. Algebra, 50(3) (2022), 1154-1168.
  • M. T. Kosan and T. C. Quynh, Rings whose (proper) cyclic modules have cyclic automorphism-invariant hulls, Appl. Algebra Engrg. Comm. Comput., 32(3) (2021), 385-397.
  • M. T. Kosan, T. C. Quynh and A. K. Srivastava, Rings with each right ideal automorphism-invariant, J. Pure Appl. Algebra, 220(4) (2016), 1525-1537.
  • M. T. Kosan, T. C. Quynh and J. Zemlicka, Kernels of homomorphisms between uniform quasi-injective modules, J. Algebra Appl., 21(8) (2022), 2250158 (15 pp).
  • F. Kourki, When maximal linearly independent subsets of a free module have the same cardinality?, Modules and Comodules, Trends Math., Birkhauser Verlag, Basel, (2008), 281-293.
  • G. Lee, S. T. Rizvi and C. S. Roman, Rickart modules, Comm. Algebra, 38(11) (2010), 4005-4027.
  • G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart modules, Comm. Algebra, 39(11) (2011), 4036-4058.
  • W. Li, J. Chen and F. Kourki, On strongly C2 modules and D2 modules, J. Algebra Appl., 12(7) (2013), 1350029 (14 pp).
  • S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990
  • W. K. Nicholson and M. F. Yousif, Weakly continuous and C2-rings, Comm. Algebra, 29(6) (2001), 2429-2446.
  • W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics, 158, Cambridge University Press, Cambridge, 2003.
  • T. C. Quynh, A. Abyzov, P. Dan and L. V. Thuyet, Rings characterized via some classes of almost-injective modules, Bull. Iranian Math. Soc., 47(5) (2021), 1571-1584.
  • T. C. Quynh, A. N. Abyzov, N. T. T. Ha and T. Yildirim, Modules close to the automorphism invariant and coinvariant, J. Algebra Appl., 18(12) (2019), 1950235 (24 pp).
  • T. C. Quynh, A. N. Abyzov and D. T. Trang, Rings all of whose finitely generated ideals are automorphism-invariant, J. Algebra Appl., 21(8) (2022), 2250159 (19 pp).
  • T. C. Quynh and M. T. Kosan, On automorphism-invariant modules, J. Algebra Appl., 14(5) (2015), 1550074 (11 pp).
  • S. T. Rizvi and C. S. Roman, On direct sums of Baer modules, J. Algebra, 321(2) (2009), 682-696.
  • L. Shen and J. Chen, On countably $\Sigma$-$C2$ modules, (2010), arXiv:1005.4167 [math.RA].
  • R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
  • Z. Zhu and J. X. Yu, On $GC_2$ modules and their endomorphism rings, Linear Multilinear Algebra, 56(5) (2008), 511-515.
There are 21 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Phan Hong Tin This is me

Nguyen Quoc Tien This is me

Early Pub Date August 16, 2025
Publication Date
Submission Date February 4, 2025
Acceptance Date May 30, 2025
Published in Issue Year 2025 Early Access

Cite

APA Tin, P. H., & Tien, N. Q. (2025). $(m,n)$-$C2$ modules and $(m,n)$-$D2$ modules. International Electronic Journal of Algebra1-14. https://doi.org/10.24330/ieja.1767105
AMA Tin PH, Tien NQ. $(m,n)$-$C2$ modules and $(m,n)$-$D2$ modules. IEJA. Published online August 1, 2025:1-14. doi:10.24330/ieja.1767105
Chicago Tin, Phan Hong, and Nguyen Quoc Tien. “$(m,n)$-$C2$ Modules and $(m,n)$-$D2$ Modules”. International Electronic Journal of Algebra, August (August 2025), 1-14. https://doi.org/10.24330/ieja.1767105.
EndNote Tin PH, Tien NQ (August 1, 2025) $(m,n)$-$C2$ modules and $(m,n)$-$D2$ modules. International Electronic Journal of Algebra 1–14.
IEEE P. H. Tin and N. Q. Tien, “$(m,n)$-$C2$ modules and $(m,n)$-$D2$ modules”, IEJA, pp. 1–14, August 2025, doi: 10.24330/ieja.1767105.
ISNAD Tin, Phan Hong - Tien, Nguyen Quoc. “$(m,n)$-$C2$ Modules and $(m,n)$-$D2$ Modules”. International Electronic Journal of Algebra. August 2025. 1-14. https://doi.org/10.24330/ieja.1767105.
JAMA Tin PH, Tien NQ. $(m,n)$-$C2$ modules and $(m,n)$-$D2$ modules. IEJA. 2025;:1–14.
MLA Tin, Phan Hong and Nguyen Quoc Tien. “$(m,n)$-$C2$ Modules and $(m,n)$-$D2$ Modules”. International Electronic Journal of Algebra, 2025, pp. 1-14, doi:10.24330/ieja.1767105.
Vancouver Tin PH, Tien NQ. $(m,n)$-$C2$ modules and $(m,n)$-$D2$ modules. IEJA. 2025:1-14.