Research Article
BibTex RIS Cite

On semi-injective lattices

Year 2025, Early Access, 1 - 29
https://doi.org/10.24330/ieja.1778490

Abstract

In a previous paper, we explored, in the context of the category $ \mathcal{L_M} $ of complete modular lattices and linear morphisms introduced by T. Albu and M. Iosif, the lattice-theoretic counterparts of semi-projective retractable modules and their ring of endomorphisms. In this work, we investigate the dual situation. That is, we introduce the concept of semi-injective coretractable lattices, and we study their relation to their monoid of endomorphisms.

References

  • T. Albu and M. Iosif, The category of linear modular lattices, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 56(104)(1) (2013), 33-46.
  • T. Albu and M. Iosif, On socle and radical of modular lattices, Ann. Univ. Buchar. Math. Ser., 5(63)(2) (2014), 187-194.
  • T. Albu and M. Iosif, Lattice preradicals with applications to Grothendieck categories and torsion theories, J. Algebra, 444 (2015), 339-366.
  • T. Albu, M. Iosif and A. Tercan, The conditions $(C_i)$ in modular lattices, and applications, J. Algebra Appl., 15(1) (2016), 1650001 (19 pp).
  • F. Borceux and M. Grandis, Jordan-Hölder, modularity and distributivity in non-commutative algebra, J. Pure Appl. Algebra, 208(2) (2007), 665-689.
  • G. Calugareanu, Lattice Concepts of Module Theory, Kluwer Texts in the Mathematical Sciences, 22, Kluwer Academic Publishers, Dordrecht, 2000.
  • F. Gonzalez-Bayona, S. Pardo-Guerra, H. A. Rincon-Mejia and M. G. Zorrilla-Noriega, On torsion theories and open classes of linear modular lattices, Comm. Algebra, 52(1) (2024), 371-391.
  • F. Gonzalez Bayona, S. Pardo-Guerra, M. G. Zorrilla-Noriega and H. A. Rincon-Mejia, On semi-projective modular lattices, Int. Electron. J. Algebra, 38 (2025), 104-138.
  • M. Grandis, Category Theory and Applications, a textbook for beginners, second edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2021.
  • A. Haghany and M. R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq., 14(3) (2007), 489-496.
  • B. Mitchell, Theory of Categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965.
  • S. Pardo-Guerra, H. A. Rincon-Mejia and M. G. Zorrilla-Noriega, Some isomorphic big lattices and some properties of lattice preradicals, J. Algebra Appl., 19(7) (2020), 2050140 (29 pp).
  • S. Pardo-Guerra, H. A. Rincon-Mejia and M. G. Zorrilla-Noriega, Big lattices of hereditary and natural classes of linear modular lattices, Algebra Universalis, 82(4) (2021), 52 (15 pp).
  • S. Pardo-Guerra, H. A. Rincon-Mejia, M. G. Zorrilla-Noriega and F. Gonzalez-Bayona, On the lattice of conatural classes of linear modular lattices, Algebra Universalis, 84(4) (2023), 29 (18 pp).
  • M. K. Patel, Properties of semi-projective modules and their endomorphism rings, In: Algebra and its Applications, Springer Proc. Math. Stat., Springer, Singapore, 174 (2016), 321-328.

Year 2025, Early Access, 1 - 29
https://doi.org/10.24330/ieja.1778490

Abstract

References

  • T. Albu and M. Iosif, The category of linear modular lattices, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 56(104)(1) (2013), 33-46.
  • T. Albu and M. Iosif, On socle and radical of modular lattices, Ann. Univ. Buchar. Math. Ser., 5(63)(2) (2014), 187-194.
  • T. Albu and M. Iosif, Lattice preradicals with applications to Grothendieck categories and torsion theories, J. Algebra, 444 (2015), 339-366.
  • T. Albu, M. Iosif and A. Tercan, The conditions $(C_i)$ in modular lattices, and applications, J. Algebra Appl., 15(1) (2016), 1650001 (19 pp).
  • F. Borceux and M. Grandis, Jordan-Hölder, modularity and distributivity in non-commutative algebra, J. Pure Appl. Algebra, 208(2) (2007), 665-689.
  • G. Calugareanu, Lattice Concepts of Module Theory, Kluwer Texts in the Mathematical Sciences, 22, Kluwer Academic Publishers, Dordrecht, 2000.
  • F. Gonzalez-Bayona, S. Pardo-Guerra, H. A. Rincon-Mejia and M. G. Zorrilla-Noriega, On torsion theories and open classes of linear modular lattices, Comm. Algebra, 52(1) (2024), 371-391.
  • F. Gonzalez Bayona, S. Pardo-Guerra, M. G. Zorrilla-Noriega and H. A. Rincon-Mejia, On semi-projective modular lattices, Int. Electron. J. Algebra, 38 (2025), 104-138.
  • M. Grandis, Category Theory and Applications, a textbook for beginners, second edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2021.
  • A. Haghany and M. R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq., 14(3) (2007), 489-496.
  • B. Mitchell, Theory of Categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965.
  • S. Pardo-Guerra, H. A. Rincon-Mejia and M. G. Zorrilla-Noriega, Some isomorphic big lattices and some properties of lattice preradicals, J. Algebra Appl., 19(7) (2020), 2050140 (29 pp).
  • S. Pardo-Guerra, H. A. Rincon-Mejia and M. G. Zorrilla-Noriega, Big lattices of hereditary and natural classes of linear modular lattices, Algebra Universalis, 82(4) (2021), 52 (15 pp).
  • S. Pardo-Guerra, H. A. Rincon-Mejia, M. G. Zorrilla-Noriega and F. Gonzalez-Bayona, On the lattice of conatural classes of linear modular lattices, Algebra Universalis, 84(4) (2023), 29 (18 pp).
  • M. K. Patel, Properties of semi-projective modules and their endomorphism rings, In: Algebra and its Applications, Springer Proc. Math. Stat., Springer, Singapore, 174 (2016), 321-328.
There are 15 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Francisco Gonzalez-bayona This is me

Sebastian Pardo-guerra This is me

Manuel Gerardo Zorrilla-noriega

Hugo Alberto Rincon Mejia

Early Pub Date September 5, 2025
Publication Date September 26, 2025
Submission Date June 15, 2025
Acceptance Date August 8, 2025
Published in Issue Year 2025 Early Access

Cite

APA Gonzalez-bayona, F., Pardo-guerra, S., Zorrilla-noriega, M. G., Rincon Mejia, H. A. (2025). On semi-injective lattices. International Electronic Journal of Algebra1-29. https://doi.org/10.24330/ieja.1778490
AMA Gonzalez-bayona F, Pardo-guerra S, Zorrilla-noriega MG, Rincon Mejia HA. On semi-injective lattices. IEJA. Published online September 1, 2025:1-29. doi:10.24330/ieja.1778490
Chicago Gonzalez-bayona, Francisco, Sebastian Pardo-guerra, Manuel Gerardo Zorrilla-noriega, and Hugo Alberto Rincon Mejia. “On Semi-Injective Lattices”. International Electronic Journal of Algebra, September (September 2025), 1-29. https://doi.org/10.24330/ieja.1778490.
EndNote Gonzalez-bayona F, Pardo-guerra S, Zorrilla-noriega MG, Rincon Mejia HA (September 1, 2025) On semi-injective lattices. International Electronic Journal of Algebra 1–29.
IEEE F. Gonzalez-bayona, S. Pardo-guerra, M. G. Zorrilla-noriega, and H. A. Rincon Mejia, “On semi-injective lattices”, IEJA, pp. 1–29, September2025, doi: 10.24330/ieja.1778490.
ISNAD Gonzalez-bayona, Francisco et al. “On Semi-Injective Lattices”. International Electronic Journal of Algebra. September2025. 1-29. https://doi.org/10.24330/ieja.1778490.
JAMA Gonzalez-bayona F, Pardo-guerra S, Zorrilla-noriega MG, Rincon Mejia HA. On semi-injective lattices. IEJA. 2025;:1–29.
MLA Gonzalez-bayona, Francisco et al. “On Semi-Injective Lattices”. International Electronic Journal of Algebra, 2025, pp. 1-29, doi:10.24330/ieja.1778490.
Vancouver Gonzalez-bayona F, Pardo-guerra S, Zorrilla-noriega MG, Rincon Mejia HA. On semi-injective lattices. IEJA. 2025:1-29.