Research Article
BibTex RIS Cite

Year 2025, Early Access, 1 - 26
https://doi.org/10.24330/ieja.1785359

Abstract

References

  • A. U. Ansari, H. Kim, S. K. Maurya and U. Tekir, Artinian* modules, Int. Electron. J. Algebra, 37 (2025), 385-397.
  • A. U. Ansari and B. K. Sharma, Graded S-Artinian modules and graded S-secondary representations, Palest. J. Math., 11(3) (2022), 175-193.
  • R. Gilmer and W. Heinzer, The Laskerian property, power series rings and Noetherian spectra, Proc. Amer. Math. Soc., 79(1) (1980), 13-16.
  • P. Jara, An extension of $S$-Noetherian rings and modules, Int. Electron. J. Algebra, 34 (2023), 1-20.
  • P. Jara, F. Omar and E. Santos, An extension of S-Noetherian spectrum property, J. Algebra Appl., (2026), 2650159 (19 pp).
  • F. Omar, I. El-Mariami and P. Jara, Some characterizations of totally Artinian rings, Arab. J. Math., (2025), (13 pp).
  • A. Tarizadeh and J. Chen, Avoidance and absorbance, J. Algebra, 582 (2021), 88-99.
  • S. Visweswaran, Some results on S-Laskerian modules, J. Algebra Appl., 24(2) (2025), 2550058 (25 pp).

Artinian rings and modules everywhere

Year 2025, Early Access, 1 - 26
https://doi.org/10.24330/ieja.1785359

Abstract

For any commutative ring $A$, the finiteness conditions are a useful tool for approximating its structure. These finiteness conditions are reflected in some way in its spectrum; for example, if $A$ is a Noetherian ring, then Spec$(A)$ is a Noetherian topological space; the converse is not necessarily true. Noetherianness of Spec$(A)$ has an interesting consequence in the behaviour of hereditary torsion theories in Mod-$A$: they are of finite type; that is, for any hereditary torsion theory $\sigma$ in Mod-$A$ there exists a cofinal set of $\mathcal{L}(\sigma)$ consisting of finitely generated ideals. The aim of this work is to study rings and modules via finite type hereditary torsion theories. Therefore, we restrict ourselves to considering hereditary torsion theories defined by finitely generated ideals and finiteness conditions relative to these theories, extending some type of rings and modules as (totally) Noetherian, (totally) Artinian or Artinian$^*$.

References

  • A. U. Ansari, H. Kim, S. K. Maurya and U. Tekir, Artinian* modules, Int. Electron. J. Algebra, 37 (2025), 385-397.
  • A. U. Ansari and B. K. Sharma, Graded S-Artinian modules and graded S-secondary representations, Palest. J. Math., 11(3) (2022), 175-193.
  • R. Gilmer and W. Heinzer, The Laskerian property, power series rings and Noetherian spectra, Proc. Amer. Math. Soc., 79(1) (1980), 13-16.
  • P. Jara, An extension of $S$-Noetherian rings and modules, Int. Electron. J. Algebra, 34 (2023), 1-20.
  • P. Jara, F. Omar and E. Santos, An extension of S-Noetherian spectrum property, J. Algebra Appl., (2026), 2650159 (19 pp).
  • F. Omar, I. El-Mariami and P. Jara, Some characterizations of totally Artinian rings, Arab. J. Math., (2025), (13 pp).
  • A. Tarizadeh and J. Chen, Avoidance and absorbance, J. Algebra, 582 (2021), 88-99.
  • S. Visweswaran, Some results on S-Laskerian modules, J. Algebra Appl., 24(2) (2025), 2550058 (25 pp).
There are 8 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

F. Omar This is me

I. El Mariami This is me

P. Jara This is me

Early Pub Date September 16, 2025
Publication Date September 24, 2025
Submission Date November 11, 2024
Acceptance Date May 28, 2025
Published in Issue Year 2025 Early Access

Cite

APA Omar, F., El Mariami, I., & Jara, P. (2025). Artinian rings and modules everywhere. International Electronic Journal of Algebra1-26. https://doi.org/10.24330/ieja.1785359
AMA Omar F, El Mariami I, Jara P. Artinian rings and modules everywhere. IEJA. Published online September 1, 2025:1-26. doi:10.24330/ieja.1785359
Chicago Omar, F., I. El Mariami, and P. Jara. “Artinian Rings and Modules Everywhere”. International Electronic Journal of Algebra, September (September 2025), 1-26. https://doi.org/10.24330/ieja.1785359.
EndNote Omar F, El Mariami I, Jara P (September 1, 2025) Artinian rings and modules everywhere. International Electronic Journal of Algebra 1–26.
IEEE F. Omar, I. El Mariami, and P. Jara, “Artinian rings and modules everywhere”, IEJA, pp. 1–26, September2025, doi: 10.24330/ieja.1785359.
ISNAD Omar, F. et al. “Artinian Rings and Modules Everywhere”. International Electronic Journal of Algebra. September2025. 1-26. https://doi.org/10.24330/ieja.1785359.
JAMA Omar F, El Mariami I, Jara P. Artinian rings and modules everywhere. IEJA. 2025;:1–26.
MLA Omar, F. et al. “Artinian Rings and Modules Everywhere”. International Electronic Journal of Algebra, 2025, pp. 1-26, doi:10.24330/ieja.1785359.
Vancouver Omar F, El Mariami I, Jara P. Artinian rings and modules everywhere. IEJA. 2025:1-26.