Research Article
BibTex RIS Cite

Nonlinear mixed skew bi-skew Jordan $n$-derivations on $\ast$-algebras

Year 2025, Early Access, 1 - 18
https://doi.org/10.24330/ieja.1823872

Abstract

Let $\mathcal{A}$ be a unital $\ast$-algebra containing nontrivial projections $P_j~~~~(j=1,2)$. In this article, we examine the nature of nonlinear mixed skew bi-skew Jordan $n$-derivations on $\mathcal{A}$. Further, we extend our main results to some special classes of $\ast$-algebras such as prime $\ast$-algebras, factor von Neumann algebras and standard operator algebras and prove that on these $\ast$-algebras every nonlinear mixed skew bi-skew Jordan $n$-derivation is an additive $\ast$-derivation.

References

  • A. Ali, A. S. Alali and M. Tasleem, Characterization of nonlinear bi-skew Jordan $n$-derivations on prime $\ast$-algebras, Axioms, 12(8) (2023), 753, 1-13.
  • A. Ali, M. Tasleem and A. N. Khan, Non-linear mixed Jordan bi-skew Lie triple derivations on $\ast$-algebras, Filomat, 38(6) (2024), 2079-2090.
  • D. Benkovic and N. Sirovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl., 437(9) (2012), 2271-2284.
  • L. Dai and F. Lu, Nonlinear maps preserving Jordan $\ast$-products, J. Math. Anal. Appl., 409(1) (2014), 180-188.
  • V. Darvish, M. Nouri and M. Razeghi, Nonlinear triple product $A^*B+B^*A$ for derivations on $\ast$-algebras, Math. Notes, 108 (2020), 179-187.
  • V. Darvish, M. Nouri, M. Razeghi and A. Taghavi, Nonlinear $\ast$-Jordan triple derivation on prime $\ast$-algebras, Rocky Mountain J. Math., 50(2) (2020), 543-549.
  • V. Darvish, M. Nouri and M. Razeghi, Non-linear bi-skew Jordan derivations on $\ast$-algebra, Filomat, 36(10) (2022), 3231-3239.
  • B. L. M. Ferreira, H. Guzzo and R. N. Ferreira, An approach between the multiplicative and additive structure of a Jordan ring, Bull. Iranian Math. Soc., 47(4) (2021), 961-975.
  • B. L. M. Ferreira and F. Wei, Mixed $\ast$-Jordan-type derivations on $\ast$-algebras, J. Algebra Appl., 22(5) (2023), 2350100 (14 pp).
  • A. N. Khan and H. Alhazmi, Multiplicative bi-skew Jordan triple derivations on prime $\ast$-algebra, Georgian Math. J., 30(3) (2023), 389-396.
  • J. Li and F. Lu, Additive Jordan derivations of reflexive algebras, J. Math. Anal. Appl., 329(1) (2007), 102-111.
  • C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product $XY+ YX^*$ on factor von Neumann algebras, Linear Algebra Appl., 438(5) (2013), 2339-2345.
  • C. Li and F. Lu, Nonlinear maps preserving the Jordan triple 1-$\ast$-product on von Neumann Algebras, Complex Anal. Oper. Theory, 11 (2017), 109-117.
  • C. Li, F. Zhao and Q. Chen, Nonlinear maps preserving product $X^*Y+Y^*X$ on von Neumann algebras, Bull. Iranian Math. Soc., 44(3) (2018), 729-738.
  • C. Li, Y. Zhao and F. Zhao, Nonlinear $\ast$-Jordan-type derivations on $\ast$-algebras, Rocky Mountain J. Math., 51(2) (2021), 601-612.
  • C. Li and D. Zhang, Nonlinear mixed Jordan triple $\ast$-derivations on factor von Neumann algebras, Filomat, 36(8) (2022), 2637-2644.
  • C. Li and D. Zhang, Nonlinear mixed Jordan triple $\ast$-derivations on $\ast$-algebras, Sib. Math. J., 63(4) (2022), 735-742.
  • F. Lu, Jordan derivable maps of prime rings, Comm. Algebra, 38(12) (2010), 4430-4440.
  • Y. Pang, D. Zhang and D. Ma, The second nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras, Bull. Iranian Math. Soc., 48(3) (2022), 951-962.
  • X. Qi, Z. Guo and T. Zhang, Characterizing Jordan n-derivations of unital rings containing idempotents, Bull. Iranian Math. Soc., 46(6) (2020), 1639-1658.
  • A. Taghavi and S. Gholampoor, Maps preserving product $A^*B+B^*A$ on $C^*$-algebras, Bull. Iranian Math. Soc., 48 (2022), 757-767.
  • A. Taghavi, H. Rohi and V. Darvish, Nonlinear $\ast$-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra, 64(3) (2016), 426-439.
  • J. Wang, C. Li, Y. Liang and L. Chen, The nonlinear mixed bi-skew lie triple derivations on $\ast$-algebras, Filomat, 37(29) (2023), 9981-9989.
  • D. Zhang, C. Li and Y. Zhao, Nonlinear maps preserving bi-skew Jordan triple product on factor von Neumann algebras, Period. Math. Hungar., 86(2) (2023), 578-586.
  • F. Zhao and C. Li, Nonlinear maps preserving the Jordan triple $\ast$-product between factors, Indag. Math. (N.S.), 29(2) (2018), 619-627.
  • F. Zhao, D. Zhang and C. Li, Nonlinear bi-skew Jordan-type derivations on $\ast$-algebras, Filomat, 37(13) (2023), 4211-4219.

Year 2025, Early Access, 1 - 18
https://doi.org/10.24330/ieja.1823872

Abstract

References

  • A. Ali, A. S. Alali and M. Tasleem, Characterization of nonlinear bi-skew Jordan $n$-derivations on prime $\ast$-algebras, Axioms, 12(8) (2023), 753, 1-13.
  • A. Ali, M. Tasleem and A. N. Khan, Non-linear mixed Jordan bi-skew Lie triple derivations on $\ast$-algebras, Filomat, 38(6) (2024), 2079-2090.
  • D. Benkovic and N. Sirovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra Appl., 437(9) (2012), 2271-2284.
  • L. Dai and F. Lu, Nonlinear maps preserving Jordan $\ast$-products, J. Math. Anal. Appl., 409(1) (2014), 180-188.
  • V. Darvish, M. Nouri and M. Razeghi, Nonlinear triple product $A^*B+B^*A$ for derivations on $\ast$-algebras, Math. Notes, 108 (2020), 179-187.
  • V. Darvish, M. Nouri, M. Razeghi and A. Taghavi, Nonlinear $\ast$-Jordan triple derivation on prime $\ast$-algebras, Rocky Mountain J. Math., 50(2) (2020), 543-549.
  • V. Darvish, M. Nouri and M. Razeghi, Non-linear bi-skew Jordan derivations on $\ast$-algebra, Filomat, 36(10) (2022), 3231-3239.
  • B. L. M. Ferreira, H. Guzzo and R. N. Ferreira, An approach between the multiplicative and additive structure of a Jordan ring, Bull. Iranian Math. Soc., 47(4) (2021), 961-975.
  • B. L. M. Ferreira and F. Wei, Mixed $\ast$-Jordan-type derivations on $\ast$-algebras, J. Algebra Appl., 22(5) (2023), 2350100 (14 pp).
  • A. N. Khan and H. Alhazmi, Multiplicative bi-skew Jordan triple derivations on prime $\ast$-algebra, Georgian Math. J., 30(3) (2023), 389-396.
  • J. Li and F. Lu, Additive Jordan derivations of reflexive algebras, J. Math. Anal. Appl., 329(1) (2007), 102-111.
  • C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product $XY+ YX^*$ on factor von Neumann algebras, Linear Algebra Appl., 438(5) (2013), 2339-2345.
  • C. Li and F. Lu, Nonlinear maps preserving the Jordan triple 1-$\ast$-product on von Neumann Algebras, Complex Anal. Oper. Theory, 11 (2017), 109-117.
  • C. Li, F. Zhao and Q. Chen, Nonlinear maps preserving product $X^*Y+Y^*X$ on von Neumann algebras, Bull. Iranian Math. Soc., 44(3) (2018), 729-738.
  • C. Li, Y. Zhao and F. Zhao, Nonlinear $\ast$-Jordan-type derivations on $\ast$-algebras, Rocky Mountain J. Math., 51(2) (2021), 601-612.
  • C. Li and D. Zhang, Nonlinear mixed Jordan triple $\ast$-derivations on factor von Neumann algebras, Filomat, 36(8) (2022), 2637-2644.
  • C. Li and D. Zhang, Nonlinear mixed Jordan triple $\ast$-derivations on $\ast$-algebras, Sib. Math. J., 63(4) (2022), 735-742.
  • F. Lu, Jordan derivable maps of prime rings, Comm. Algebra, 38(12) (2010), 4430-4440.
  • Y. Pang, D. Zhang and D. Ma, The second nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras, Bull. Iranian Math. Soc., 48(3) (2022), 951-962.
  • X. Qi, Z. Guo and T. Zhang, Characterizing Jordan n-derivations of unital rings containing idempotents, Bull. Iranian Math. Soc., 46(6) (2020), 1639-1658.
  • A. Taghavi and S. Gholampoor, Maps preserving product $A^*B+B^*A$ on $C^*$-algebras, Bull. Iranian Math. Soc., 48 (2022), 757-767.
  • A. Taghavi, H. Rohi and V. Darvish, Nonlinear $\ast$-Jordan derivations on von Neumann algebras, Linear Multilinear Algebra, 64(3) (2016), 426-439.
  • J. Wang, C. Li, Y. Liang and L. Chen, The nonlinear mixed bi-skew lie triple derivations on $\ast$-algebras, Filomat, 37(29) (2023), 9981-9989.
  • D. Zhang, C. Li and Y. Zhao, Nonlinear maps preserving bi-skew Jordan triple product on factor von Neumann algebras, Period. Math. Hungar., 86(2) (2023), 578-586.
  • F. Zhao and C. Li, Nonlinear maps preserving the Jordan triple $\ast$-product between factors, Indag. Math. (N.S.), 29(2) (2018), 619-627.
  • F. Zhao, D. Zhang and C. Li, Nonlinear bi-skew Jordan-type derivations on $\ast$-algebras, Filomat, 37(13) (2023), 4211-4219.
There are 26 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Asma Ali

Claus Haetinger This is me

Tooba Naz This is me

Mohd Tasleem

Early Pub Date November 14, 2025
Publication Date November 25, 2025
Submission Date December 23, 2024
Acceptance Date August 14, 2025
Published in Issue Year 2025 Early Access

Cite

APA Ali, A., Haetinger, C., Naz, T., Tasleem, M. (2025). Nonlinear mixed skew bi-skew Jordan $n$-derivations on $\ast$-algebras. International Electronic Journal of Algebra1-18. https://doi.org/10.24330/ieja.1823872
AMA Ali A, Haetinger C, Naz T, Tasleem M. Nonlinear mixed skew bi-skew Jordan $n$-derivations on $\ast$-algebras. IEJA. Published online November 1, 2025:1-18. doi:10.24330/ieja.1823872
Chicago Ali, Asma, Claus Haetinger, Tooba Naz, and Mohd Tasleem. “Nonlinear Mixed Skew Bi-Skew Jordan $n$-Derivations on $\ast$-Algebras”. International Electronic Journal of Algebra, November (November 2025), 1-18. https://doi.org/10.24330/ieja.1823872.
EndNote Ali A, Haetinger C, Naz T, Tasleem M (November 1, 2025) Nonlinear mixed skew bi-skew Jordan $n$-derivations on $\ast$-algebras. International Electronic Journal of Algebra 1–18.
IEEE A. Ali, C. Haetinger, T. Naz, and M. Tasleem, “Nonlinear mixed skew bi-skew Jordan $n$-derivations on $\ast$-algebras”, IEJA, pp. 1–18, November2025, doi: 10.24330/ieja.1823872.
ISNAD Ali, Asma et al. “Nonlinear Mixed Skew Bi-Skew Jordan $n$-Derivations on $\ast$-Algebras”. International Electronic Journal of Algebra. November2025. 1-18. https://doi.org/10.24330/ieja.1823872.
JAMA Ali A, Haetinger C, Naz T, Tasleem M. Nonlinear mixed skew bi-skew Jordan $n$-derivations on $\ast$-algebras. IEJA. 2025;:1–18.
MLA Ali, Asma et al. “Nonlinear Mixed Skew Bi-Skew Jordan $n$-Derivations on $\ast$-Algebras”. International Electronic Journal of Algebra, 2025, pp. 1-18, doi:10.24330/ieja.1823872.
Vancouver Ali A, Haetinger C, Naz T, Tasleem M. Nonlinear mixed skew bi-skew Jordan $n$-derivations on $\ast$-algebras. IEJA. 2025:1-18.