Research Article
BibTex RIS Cite

Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_qG$ from a subalgebra of factor group of $G$

Year 2022, Volume: 32 Issue: 32, 91 - 100, 16.07.2022
https://doi.org/10.24330/ieja.1077582

Abstract

In this paper, we derive a condition under which the Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_qG$ can be deduced from the Wedderburn decomposition of $\mathbb{F}_q(G/H)$, where $H$ is a normal subgroup of $G$ having two elements and $q=p^k$ for some prime $p$ and $k\in \mathbb{Z}^+$. In order to complement the abstract theory of the paper, we deduce the Wedderburn decomposition and hence the unit group of semisimple group algebra $\mathbb{F}_q(A_5\rtimes C_4)$, where $A_5\rtimes C_4$ is a non-metabelian group and $C_4$ is a cyclic group of order $4$.

References

  • G. K. Bakshi, S. Gupta and I. B. S. Passi, The algebraic structure of finite metabelian group algebras, Comm. Algebra, 43(6) (2015), 2240-2257.
  • R. A. Ferraz, Simple components of the center of $\mathbb{F}G/J(\mathbb{F}G)$, Comm. Algebra, 36(9) (2008), 3191-3199.
  • M. Khan, R. K. Sharma and J. B. Srivastava, The unit group of $FS_4$, Acta Math. Hungar., 118(1-2) (2008), 105-113.
  • R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, New York, 1994.
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, The unit group of $\mathbb{F}_q[D_{30}]$, Serdica Math. J., 41 (2015), 185-198.
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, A note on the structure of $\mathbb{F}_{p^k}A_5/J(\mathbb{F}_{p^k}A_5)$, Acta Sci. Math. (Szeged), 82 (2016), 29-43.
  • C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
  • G. Mittal and R. K. Sharma, On unit group of finite group algebras of non-metabelian groups upto order 72, Math. Bohem., 146(4) (2021), 429-455.
  • G. Mittal and R. K. Sharma, On unit group of finite group algebras of non-metabelian groups of order 108, J. Algebra Comb. Discrete Appl., 8(2) (2021), 59-71.
  • G. Mittal and R. K. Sharma, Unit group of semisimple group algebras of some non-metabelian groups of order 120, Asian-Eur. J. Math, (2021), Online first, DOI: 10.1142/S1793557122500590.
  • S. Perlis and G. L. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc., 68 (1950), 420-426.
  • B. Sagan, The Symmetric Group, Representations, Combinatorial Algorithms, and Symmetric Functions, Springer-Verlag, 2001.
  • R. K. Sharma and G. Mittal, Unit group of semisimple group algebra $F_qSL(2, 5)$, Math. Bohem., (2021), Online first, DOI: 10.21136/MB.2021.0104-20.
  • R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of FA_4, Publ. Math. Debrecen, 71(1-2) (2007), 21-26.
  • P. Webb, A Course in Finite Group Representation Theory, Cambridge Studies in Advanced Mathematics, 161, Cambridge University Press, Cambridge, 2016.
Year 2022, Volume: 32 Issue: 32, 91 - 100, 16.07.2022
https://doi.org/10.24330/ieja.1077582

Abstract

References

  • G. K. Bakshi, S. Gupta and I. B. S. Passi, The algebraic structure of finite metabelian group algebras, Comm. Algebra, 43(6) (2015), 2240-2257.
  • R. A. Ferraz, Simple components of the center of $\mathbb{F}G/J(\mathbb{F}G)$, Comm. Algebra, 36(9) (2008), 3191-3199.
  • M. Khan, R. K. Sharma and J. B. Srivastava, The unit group of $FS_4$, Acta Math. Hungar., 118(1-2) (2008), 105-113.
  • R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, New York, 1994.
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, The unit group of $\mathbb{F}_q[D_{30}]$, Serdica Math. J., 41 (2015), 185-198.
  • N. Makhijani, R. K. Sharma and J. B. Srivastava, A note on the structure of $\mathbb{F}_{p^k}A_5/J(\mathbb{F}_{p^k}A_5)$, Acta Sci. Math. (Szeged), 82 (2016), 29-43.
  • C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
  • G. Mittal and R. K. Sharma, On unit group of finite group algebras of non-metabelian groups upto order 72, Math. Bohem., 146(4) (2021), 429-455.
  • G. Mittal and R. K. Sharma, On unit group of finite group algebras of non-metabelian groups of order 108, J. Algebra Comb. Discrete Appl., 8(2) (2021), 59-71.
  • G. Mittal and R. K. Sharma, Unit group of semisimple group algebras of some non-metabelian groups of order 120, Asian-Eur. J. Math, (2021), Online first, DOI: 10.1142/S1793557122500590.
  • S. Perlis and G. L. Walker, Abelian group algebras of finite order, Trans. Amer. Math. Soc., 68 (1950), 420-426.
  • B. Sagan, The Symmetric Group, Representations, Combinatorial Algorithms, and Symmetric Functions, Springer-Verlag, 2001.
  • R. K. Sharma and G. Mittal, Unit group of semisimple group algebra $F_qSL(2, 5)$, Math. Bohem., (2021), Online first, DOI: 10.21136/MB.2021.0104-20.
  • R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of FA_4, Publ. Math. Debrecen, 71(1-2) (2007), 21-26.
  • P. Webb, A Course in Finite Group Representation Theory, Cambridge Studies in Advanced Mathematics, 161, Cambridge University Press, Cambridge, 2016.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Gaurav Mıttal This is me

Rajendra Kumar Sharma This is me

Publication Date July 16, 2022
Published in Issue Year 2022 Volume: 32 Issue: 32

Cite

APA Mıttal, G., & Sharma, R. K. (2022). Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_qG$ from a subalgebra of factor group of $G$. International Electronic Journal of Algebra, 32(32), 91-100. https://doi.org/10.24330/ieja.1077582
AMA Mıttal G, Sharma RK. Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_qG$ from a subalgebra of factor group of $G$. IEJA. July 2022;32(32):91-100. doi:10.24330/ieja.1077582
Chicago Mıttal, Gaurav, and Rajendra Kumar Sharma. “Wedderburn Decomposition of a Semisimple Group Algebra $\mathbb{F}_qG$ from a Subalgebra of Factor Group of $G$”. International Electronic Journal of Algebra 32, no. 32 (July 2022): 91-100. https://doi.org/10.24330/ieja.1077582.
EndNote Mıttal G, Sharma RK (July 1, 2022) Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_qG$ from a subalgebra of factor group of $G$. International Electronic Journal of Algebra 32 32 91–100.
IEEE G. Mıttal and R. K. Sharma, “Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_qG$ from a subalgebra of factor group of $G$”, IEJA, vol. 32, no. 32, pp. 91–100, 2022, doi: 10.24330/ieja.1077582.
ISNAD Mıttal, Gaurav - Sharma, Rajendra Kumar. “Wedderburn Decomposition of a Semisimple Group Algebra $\mathbb{F}_qG$ from a Subalgebra of Factor Group of $G$”. International Electronic Journal of Algebra 32/32 (July 2022), 91-100. https://doi.org/10.24330/ieja.1077582.
JAMA Mıttal G, Sharma RK. Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_qG$ from a subalgebra of factor group of $G$. IEJA. 2022;32:91–100.
MLA Mıttal, Gaurav and Rajendra Kumar Sharma. “Wedderburn Decomposition of a Semisimple Group Algebra $\mathbb{F}_qG$ from a Subalgebra of Factor Group of $G$”. International Electronic Journal of Algebra, vol. 32, no. 32, 2022, pp. 91-100, doi:10.24330/ieja.1077582.
Vancouver Mıttal G, Sharma RK. Wedderburn decomposition of a semisimple group algebra $\mathbb{F}_qG$ from a subalgebra of factor group of $G$. IEJA. 2022;32(32):91-100.