Research Article
BibTex RIS Cite

When does a quotient ring of a PID have the cancellation property?

Year 2022, Volume: 32 Issue: 32, 86 - 90, 16.07.2022
https://doi.org/10.24330/ieja.1102363

Abstract

An ideal $I$ of a commutative ring is called a cancellation ideal
if $IB = IC$ implies $B = C$ for all ideals $B$ and $C$.
Let $D$ be a principal ideal domain (PID), $a, b \in D$ be nonzero elements with $a \nmid b$,
$(a, b)D = dD$ for some $d \in D$, $D_a = D/aD$ be the quotient ring of $D$ modulo $aD$,
and $bD_a = (a,b)D/aD$; so $bD_a$ is a nonzero commutative ring. In this paper, we show that
the following three properties are equivalent:
(i) $\frac{a}{d}$ is a prime element and $a \nmid d^{2}$,
(ii) every nonzero ideal of $bD_a$ is a cancellation ideal,
and (iii) $bD_a$ is a field.

References

  • D.D. Anderson and M. Roitman, A characterization of cancellation ideals, Proc. Amer. Math. Soc., 125 (1997), 2853-2854.
  • S. Chaopraknoi, K. Savettaseranee and P. Lertwichitsilp, Some cancellation ideal rings, Gen. Math., 13 (2005), 39-46.
  • A. Geroldinger and Q. Zhong, Factorization theory in commutative monoids, Semigroup Forum, 100 (2020), 22-51.
  • R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
  • R. Gilmer, Commutative Semigroup Rings, Univ. Chicago Press, Chicago, 1984.
Year 2022, Volume: 32 Issue: 32, 86 - 90, 16.07.2022
https://doi.org/10.24330/ieja.1102363

Abstract

References

  • D.D. Anderson and M. Roitman, A characterization of cancellation ideals, Proc. Amer. Math. Soc., 125 (1997), 2853-2854.
  • S. Chaopraknoi, K. Savettaseranee and P. Lertwichitsilp, Some cancellation ideal rings, Gen. Math., 13 (2005), 39-46.
  • A. Geroldinger and Q. Zhong, Factorization theory in commutative monoids, Semigroup Forum, 100 (2020), 22-51.
  • R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
  • R. Gilmer, Commutative Semigroup Rings, Univ. Chicago Press, Chicago, 1984.
There are 5 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Gyu Whan Chang This is me

Jun Seok Oh This is me

Publication Date July 16, 2022
Published in Issue Year 2022 Volume: 32 Issue: 32

Cite

APA Chang, G. W., & Oh, J. S. (2022). When does a quotient ring of a PID have the cancellation property?. International Electronic Journal of Algebra, 32(32), 86-90. https://doi.org/10.24330/ieja.1102363
AMA Chang GW, Oh JS. When does a quotient ring of a PID have the cancellation property?. IEJA. July 2022;32(32):86-90. doi:10.24330/ieja.1102363
Chicago Chang, Gyu Whan, and Jun Seok Oh. “When Does a Quotient Ring of a PID Have the Cancellation Property?”. International Electronic Journal of Algebra 32, no. 32 (July 2022): 86-90. https://doi.org/10.24330/ieja.1102363.
EndNote Chang GW, Oh JS (July 1, 2022) When does a quotient ring of a PID have the cancellation property?. International Electronic Journal of Algebra 32 32 86–90.
IEEE G. W. Chang and J. S. Oh, “When does a quotient ring of a PID have the cancellation property?”, IEJA, vol. 32, no. 32, pp. 86–90, 2022, doi: 10.24330/ieja.1102363.
ISNAD Chang, Gyu Whan - Oh, Jun Seok. “When Does a Quotient Ring of a PID Have the Cancellation Property?”. International Electronic Journal of Algebra 32/32 (July 2022), 86-90. https://doi.org/10.24330/ieja.1102363.
JAMA Chang GW, Oh JS. When does a quotient ring of a PID have the cancellation property?. IEJA. 2022;32:86–90.
MLA Chang, Gyu Whan and Jun Seok Oh. “When Does a Quotient Ring of a PID Have the Cancellation Property?”. International Electronic Journal of Algebra, vol. 32, no. 32, 2022, pp. 86-90, doi:10.24330/ieja.1102363.
Vancouver Chang GW, Oh JS. When does a quotient ring of a PID have the cancellation property?. IEJA. 2022;32(32):86-90.