Research Article
BibTex RIS Cite
Year 2023, Volume: 33 Issue: 33, 125 - 132, 09.01.2023
https://doi.org/10.24330/ieja.1156662

Abstract

References

  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., 1969.
  • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra, 217(2) (1999), 434-447.
  • D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring II, In: Ideal theoretic methods in commutative algebra (Columbia (MO); 1999), Lecture Notes in Pure and Applied Mathematics, vol. 220, Dekker, New York, 2001, pp. 61-72.
  • S. M. Buckley and D. Machale, Commuting probability for subrings and quotient rings, J. Algebra Comb. Discrete Struct. Appl., 4(2) (2017), 189-196.
  • D.S. Dummit and R. M. Foote, Abstract Algebra, third edition, John Wiley and Sons, Inc., Hoboken, NJ, 2004.
  • P. Erdos and P. Turan, On some problems of a statistical group theory IV, Acta Math. Acad. Sci. Hungar., 19 (1968), 413-435.
  • M. A. Esmkhani and S. M. Jafarian Amiri, The probability that the multiplication of two ring elements is zero, J. Algebra Appl., 17(3) (2018), 9 pp.
  • W. H. Gustafson, What is the probability that two group elements commute?, Amer. Math. Monthly, 80 (1973), 1031-1034.
  • Sanhan M.S. Khasraw, What is the probability that two elements of a finite ring have product zero?, Mal. J. Fund. Appl. Sci., 16(04) (2020), 497-499.
  • D. MacHale, How commutative can a non-commutative group be?, Math. Gaz., 58 (1974), 199-202.
  • D. Machale, Commutativity in finite rings, Amer. Math. Monthly, 83(1) (1975), 30-32.
  • S.P. Redmond, The zero-divisor graph of a non-commutative ring, In: Commutative rings, Nova Sci. Publ., Hauppauge, NY, 2002, 39-47.
  • S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9) (2003), 4425-4443.
  • S.P. Redmond, Structure in the zero-divisor graph of a noncommutative ring, Houston J. Math, 30(2) (2004), 345-355.
  • S.P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math., 307 (2007), 1155-1166.
  • S. U. Rehman, A. Q. Baig and K. Haider, A probabilistic approach toward finite commutative ring, Southeast Asian Bull. Math., 43 (2019), 413-418.
  • D. J. Rusin, What is the probability that two elements of a finite group commute?, Pacific J. Math., 82 (1979), 237-247.

On generalized probability in finite commutative rings

Year 2023, Volume: 33 Issue: 33, 125 - 132, 09.01.2023
https://doi.org/10.24330/ieja.1156662

Abstract

Let $R$ be a finite commutative ring with unity and $x\in R$. We study the probability that the product of two randomly chosen elements (with replacement) of $R$ equals $x$. We denote this probability by $Prob_x (R)$. We determine some bounds for this probability and also obtain some characterizations of finite commutative rings based on this probability. Moreover, we determine the explicit computing formulas for $Prob_x (R)$ when $R=\mathbb{Z}_m\times \mathbb{Z}_n$.

References

  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., 1969.
  • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra, 217(2) (1999), 434-447.
  • D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring II, In: Ideal theoretic methods in commutative algebra (Columbia (MO); 1999), Lecture Notes in Pure and Applied Mathematics, vol. 220, Dekker, New York, 2001, pp. 61-72.
  • S. M. Buckley and D. Machale, Commuting probability for subrings and quotient rings, J. Algebra Comb. Discrete Struct. Appl., 4(2) (2017), 189-196.
  • D.S. Dummit and R. M. Foote, Abstract Algebra, third edition, John Wiley and Sons, Inc., Hoboken, NJ, 2004.
  • P. Erdos and P. Turan, On some problems of a statistical group theory IV, Acta Math. Acad. Sci. Hungar., 19 (1968), 413-435.
  • M. A. Esmkhani and S. M. Jafarian Amiri, The probability that the multiplication of two ring elements is zero, J. Algebra Appl., 17(3) (2018), 9 pp.
  • W. H. Gustafson, What is the probability that two group elements commute?, Amer. Math. Monthly, 80 (1973), 1031-1034.
  • Sanhan M.S. Khasraw, What is the probability that two elements of a finite ring have product zero?, Mal. J. Fund. Appl. Sci., 16(04) (2020), 497-499.
  • D. MacHale, How commutative can a non-commutative group be?, Math. Gaz., 58 (1974), 199-202.
  • D. Machale, Commutativity in finite rings, Amer. Math. Monthly, 83(1) (1975), 30-32.
  • S.P. Redmond, The zero-divisor graph of a non-commutative ring, In: Commutative rings, Nova Sci. Publ., Hauppauge, NY, 2002, 39-47.
  • S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9) (2003), 4425-4443.
  • S.P. Redmond, Structure in the zero-divisor graph of a noncommutative ring, Houston J. Math, 30(2) (2004), 345-355.
  • S.P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math., 307 (2007), 1155-1166.
  • S. U. Rehman, A. Q. Baig and K. Haider, A probabilistic approach toward finite commutative ring, Southeast Asian Bull. Math., 43 (2019), 413-418.
  • D. J. Rusin, What is the probability that two elements of a finite group commute?, Pacific J. Math., 82 (1979), 237-247.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Shafiq Ur Rehman This is me

Muhammad Naveed Shaheryar This is me

Publication Date January 9, 2023
Published in Issue Year 2023 Volume: 33 Issue: 33

Cite

APA Rehman, S. U., & Shaheryar, M. N. (2023). On generalized probability in finite commutative rings. International Electronic Journal of Algebra, 33(33), 125-132. https://doi.org/10.24330/ieja.1156662
AMA Rehman SU, Shaheryar MN. On generalized probability in finite commutative rings. IEJA. January 2023;33(33):125-132. doi:10.24330/ieja.1156662
Chicago Rehman, Shafiq Ur, and Muhammad Naveed Shaheryar. “On Generalized Probability in Finite Commutative Rings”. International Electronic Journal of Algebra 33, no. 33 (January 2023): 125-32. https://doi.org/10.24330/ieja.1156662.
EndNote Rehman SU, Shaheryar MN (January 1, 2023) On generalized probability in finite commutative rings. International Electronic Journal of Algebra 33 33 125–132.
IEEE S. U. Rehman and M. N. Shaheryar, “On generalized probability in finite commutative rings”, IEJA, vol. 33, no. 33, pp. 125–132, 2023, doi: 10.24330/ieja.1156662.
ISNAD Rehman, Shafiq Ur - Shaheryar, Muhammad Naveed. “On Generalized Probability in Finite Commutative Rings”. International Electronic Journal of Algebra 33/33 (January 2023), 125-132. https://doi.org/10.24330/ieja.1156662.
JAMA Rehman SU, Shaheryar MN. On generalized probability in finite commutative rings. IEJA. 2023;33:125–132.
MLA Rehman, Shafiq Ur and Muhammad Naveed Shaheryar. “On Generalized Probability in Finite Commutative Rings”. International Electronic Journal of Algebra, vol. 33, no. 33, 2023, pp. 125-32, doi:10.24330/ieja.1156662.
Vancouver Rehman SU, Shaheryar MN. On generalized probability in finite commutative rings. IEJA. 2023;33(33):125-32.