Research Article
BibTex RIS Cite

Cayley subspace sum graph of vector spaces

Year 2023, Volume: 33 Issue: 33, 1 - 17, 09.01.2023
https://doi.org/10.24330/ieja.1195466

Abstract

Let $\mathbb{V}$ be a finite dimensional vector space over the field $\mathbb{F}$. Let $S(\mathbb{V})$ be the set of all subspaces of $\mathbb{V}$ and $\mathbb{A}\subseteq S^*(\mathbb{V})=S(\mathbb{V})\backslash\{0\}.$ In this paper, we define the Cayley subspace sum graph of $\mathbb{V},$ denoted by Cay$(S^*(\mathbb{V}),\mathbb{A}), $ as the simple undirected graph with vertex set $S^*(\mathbb{V})$ and two distinct vertices $X$ and $Y$ are adjacent if $X+Z=Y$ or $Y+Z=X$ for some $Z\in \mathbb{A}$. Having defined the Cayley subspace sum graph, we study about the connectedness, diameter and girth of several classes of Cayley subspace sum graphs Cay$(S^*(\mathbb{V}), \mathbb{A})$ for a finite dimensional vector space $\mathbb{V}$ and $\mathbb{A}\subseteq S^*(\mathbb{V})=S(\mathbb{V})\backslash\{0\}.$

References

  • M. Afkhami, K. Khashyarmanesh and K. Nafar, Generalized Cayley graphs associated to commutative rings, Linear Algebra Appl., 437(3) (2012), 1040-1049.
  • M. Afkhami, M. R. Ahmadi, R. Jahani-Nezhad and K. Khashyarmanesh, Cayley graphs of ideals in a commutative ring, Bull. Malays. Math. Sci. Soc., 37(3) (2014), 833-843.
  • M. Afkhami, Z. Barati, K. Khashyarmanesh and N. Paknejad, Cayley sum graphs of ideals of a commutative ring, J. Aust. Math. Soc., 96(3) (2014), 289-302.
  • M. Afkhami, H. R. Barani, K. Khashyarmanesh and F. Rahbarnia, A new class of Cayley graphs, J. Algebra Appl. 15(4) (2016), 1650076 (8 pp).
  • D. F. Anderson, T. Asir, A. Badawi and T. Tamizh Chelvam, Graphs from Rings, First ed., Springer, Cham, 2021.
  • J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
  • P. J. Cameron, A. Das and H. K. Dey, On some properties of vector space based graphs, Linear Multilinear Algebra, https://doi.org/10.1080/03081087.2022.2121370, 2022.
  • A. Das, Nonzero Component graph of a finite dimensional vector space, Comm. Algebra, 44(9) (2016), 3918-3926.
  • A. Das, Subspace inclusion graph of a vector space, Comm. Algebra, 44(11) (2016), 4724-4731.
  • A. Das, Non-zero component union graph of a finite-dimensional vector space, Linear Multilinear Algebra, 65(6) (2017), 1276-1287.
  • A. Das, On subspace inclusion graph of a vector space, Linear Multilinear Algebra, 66(3) (2018), 554-564.
  • A. V. Kelarev, On undirected Cayley graphs, Australas. J. Combin., 25 (2002), 73-78.
  • C. Lanong and S. Dutta, Some results on graphs associated with vector spaces, J. Inf. Optim. Sci., 38(8) (2017), 1357-1368.
  • T. Tamizh Chelvam and S. Anukumar Kathirvel, Generalized unit and unitary Cayley graphs of finite rings, J. Algebra Appl., 18(1)(2019), 1950006 (21 pp).
  • T. Tamizh Chelvam and G. Kalaimurugan, Bounds for domination parameters in Cayley graphs on Dihedral group, Open J. Discrete Math., 2 (2012), 5-10.
  • T. Tamizh Chelvam and K. Prabha Ananthi, The genus of graphs associated with vector spaces, J. Algebra Appl., 19(5) (2020), 2050086 (11 pp).
  • T. Tamizh Chelvam, G. Kalaimurugan and W. Y. Chou, The signed star domination number of Cayley graphs, Discrete Math. Algorithms Appl., 4(2) (2012), 1250017 (10 pp).
  • T. Tamizh Chelvam, K. Selvakumar and V. Ramanathan, Cayley sum graph of ideals of commutative rings, J. Algebra Appl., 17(7) (2018), 1850125 (14 pp).
  • B. Tolue, Vector Space semi-Cayley graphs, Iran. J. Math. Sci. Inform., 13(2) (2018), 83-91.
  • D. Wong, X. Wang and C. Xia, On two conjectures on the subspace inclusion graph of a vector space, J. Algebra Appl., 17(10)(2018), 1850189 (9 pp).
Year 2023, Volume: 33 Issue: 33, 1 - 17, 09.01.2023
https://doi.org/10.24330/ieja.1195466

Abstract

References

  • M. Afkhami, K. Khashyarmanesh and K. Nafar, Generalized Cayley graphs associated to commutative rings, Linear Algebra Appl., 437(3) (2012), 1040-1049.
  • M. Afkhami, M. R. Ahmadi, R. Jahani-Nezhad and K. Khashyarmanesh, Cayley graphs of ideals in a commutative ring, Bull. Malays. Math. Sci. Soc., 37(3) (2014), 833-843.
  • M. Afkhami, Z. Barati, K. Khashyarmanesh and N. Paknejad, Cayley sum graphs of ideals of a commutative ring, J. Aust. Math. Soc., 96(3) (2014), 289-302.
  • M. Afkhami, H. R. Barani, K. Khashyarmanesh and F. Rahbarnia, A new class of Cayley graphs, J. Algebra Appl. 15(4) (2016), 1650076 (8 pp).
  • D. F. Anderson, T. Asir, A. Badawi and T. Tamizh Chelvam, Graphs from Rings, First ed., Springer, Cham, 2021.
  • J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
  • P. J. Cameron, A. Das and H. K. Dey, On some properties of vector space based graphs, Linear Multilinear Algebra, https://doi.org/10.1080/03081087.2022.2121370, 2022.
  • A. Das, Nonzero Component graph of a finite dimensional vector space, Comm. Algebra, 44(9) (2016), 3918-3926.
  • A. Das, Subspace inclusion graph of a vector space, Comm. Algebra, 44(11) (2016), 4724-4731.
  • A. Das, Non-zero component union graph of a finite-dimensional vector space, Linear Multilinear Algebra, 65(6) (2017), 1276-1287.
  • A. Das, On subspace inclusion graph of a vector space, Linear Multilinear Algebra, 66(3) (2018), 554-564.
  • A. V. Kelarev, On undirected Cayley graphs, Australas. J. Combin., 25 (2002), 73-78.
  • C. Lanong and S. Dutta, Some results on graphs associated with vector spaces, J. Inf. Optim. Sci., 38(8) (2017), 1357-1368.
  • T. Tamizh Chelvam and S. Anukumar Kathirvel, Generalized unit and unitary Cayley graphs of finite rings, J. Algebra Appl., 18(1)(2019), 1950006 (21 pp).
  • T. Tamizh Chelvam and G. Kalaimurugan, Bounds for domination parameters in Cayley graphs on Dihedral group, Open J. Discrete Math., 2 (2012), 5-10.
  • T. Tamizh Chelvam and K. Prabha Ananthi, The genus of graphs associated with vector spaces, J. Algebra Appl., 19(5) (2020), 2050086 (11 pp).
  • T. Tamizh Chelvam, G. Kalaimurugan and W. Y. Chou, The signed star domination number of Cayley graphs, Discrete Math. Algorithms Appl., 4(2) (2012), 1250017 (10 pp).
  • T. Tamizh Chelvam, K. Selvakumar and V. Ramanathan, Cayley sum graph of ideals of commutative rings, J. Algebra Appl., 17(7) (2018), 1850125 (14 pp).
  • B. Tolue, Vector Space semi-Cayley graphs, Iran. J. Math. Sci. Inform., 13(2) (2018), 83-91.
  • D. Wong, X. Wang and C. Xia, On two conjectures on the subspace inclusion graph of a vector space, J. Algebra Appl., 17(10)(2018), 1850189 (9 pp).
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

G. Kalaımurugan This is me

S. Gopınath This is me

T. Tamızh Chelvam This is me

Publication Date January 9, 2023
Published in Issue Year 2023 Volume: 33 Issue: 33

Cite

APA Kalaımurugan, G., Gopınath, S., & Tamızh Chelvam, T. (2023). Cayley subspace sum graph of vector spaces. International Electronic Journal of Algebra, 33(33), 1-17. https://doi.org/10.24330/ieja.1195466
AMA Kalaımurugan G, Gopınath S, Tamızh Chelvam T. Cayley subspace sum graph of vector spaces. IEJA. January 2023;33(33):1-17. doi:10.24330/ieja.1195466
Chicago Kalaımurugan, G., S. Gopınath, and T. Tamızh Chelvam. “Cayley Subspace Sum Graph of Vector Spaces”. International Electronic Journal of Algebra 33, no. 33 (January 2023): 1-17. https://doi.org/10.24330/ieja.1195466.
EndNote Kalaımurugan G, Gopınath S, Tamızh Chelvam T (January 1, 2023) Cayley subspace sum graph of vector spaces. International Electronic Journal of Algebra 33 33 1–17.
IEEE G. Kalaımurugan, S. Gopınath, and T. Tamızh Chelvam, “Cayley subspace sum graph of vector spaces”, IEJA, vol. 33, no. 33, pp. 1–17, 2023, doi: 10.24330/ieja.1195466.
ISNAD Kalaımurugan, G. et al. “Cayley Subspace Sum Graph of Vector Spaces”. International Electronic Journal of Algebra 33/33 (January 2023), 1-17. https://doi.org/10.24330/ieja.1195466.
JAMA Kalaımurugan G, Gopınath S, Tamızh Chelvam T. Cayley subspace sum graph of vector spaces. IEJA. 2023;33:1–17.
MLA Kalaımurugan, G. et al. “Cayley Subspace Sum Graph of Vector Spaces”. International Electronic Journal of Algebra, vol. 33, no. 33, 2023, pp. 1-17, doi:10.24330/ieja.1195466.
Vancouver Kalaımurugan G, Gopınath S, Tamızh Chelvam T. Cayley subspace sum graph of vector spaces. IEJA. 2023;33(33):1-17.