Research Article
BibTex RIS Cite

When do quasi-cyclic codes have $\mathbb F_{q^l}$-linear image?

Year 2023, Volume: 33 Issue: 33, 77 - 86, 09.01.2023
https://doi.org/10.24330/ieja.1198011

Abstract

A length $ml$, index $l$ quasi-cyclic code can be viewed as a cyclic code of length $m$ over the field $\mathbb F_{q^l}$ via a basis of the extension $\mathbb F_{q^l}/\mathbb F_{q}$.
This cyclic code is an additive cyclic code.
In [C. Güneri, F. Özdemir, P. Solé, On the additive cyclic structure of quasi-cyclic codes, Discrete. Math., 341 (2018), 2735-2741], authors characterize
the $(l,m)$ values for one-generator quasi-cyclic codes for which it is
impossible to have an $\mathbb F_{q^l}$-linear image for any choice
of the polynomial basis of $\mathbb F_{q^l}/\mathbb F_{q}$.
But this characterization for some $(l,m)$
values is very intricate. In this paper, by the use of this characterization, we give a more simple characterization.

References

  • J. Bierbrauer, The theory of cyclic codes and a generalization to additive codes, Des.Codes Cryptogr., 25(2) (2002), 189-206.
  • C. Güneri, F. Özdemir and P. Sole, On the additive cyclic structure of quasi-cycliccodes, Discrete. Math., 341(10) (2018), 2735-2741.
  • S. Ling and C. Xing, Coding Theory, Cambridge University Press, 2004.
  • M. Shi, J. Tang, M. Ge, L. Sok and P. Sole, A special class ofquasi-cyclic codes, Bull. Aust. Math. Soc., 96(3) (2017), 513-518.
  • M. Shi, R. Wu and P. Sole, Long cyclic codes are good, arXiv: 1709.09865v3 [cs.IT], 17 oct 2017, 1-5.
Year 2023, Volume: 33 Issue: 33, 77 - 86, 09.01.2023
https://doi.org/10.24330/ieja.1198011

Abstract

References

  • J. Bierbrauer, The theory of cyclic codes and a generalization to additive codes, Des.Codes Cryptogr., 25(2) (2002), 189-206.
  • C. Güneri, F. Özdemir and P. Sole, On the additive cyclic structure of quasi-cycliccodes, Discrete. Math., 341(10) (2018), 2735-2741.
  • S. Ling and C. Xing, Coding Theory, Cambridge University Press, 2004.
  • M. Shi, J. Tang, M. Ge, L. Sok and P. Sole, A special class ofquasi-cyclic codes, Bull. Aust. Math. Soc., 96(3) (2017), 513-518.
  • M. Shi, R. Wu and P. Sole, Long cyclic codes are good, arXiv: 1709.09865v3 [cs.IT], 17 oct 2017, 1-5.
There are 5 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

R. Nekooeı This is me

Z. Pourshafıey This is me

Publication Date January 9, 2023
Published in Issue Year 2023 Volume: 33 Issue: 33

Cite

APA Nekooeı, R., & Pourshafıey, Z. (2023). When do quasi-cyclic codes have $\mathbb F_{q^l}$-linear image?. International Electronic Journal of Algebra, 33(33), 77-86. https://doi.org/10.24330/ieja.1198011
AMA Nekooeı R, Pourshafıey Z. When do quasi-cyclic codes have $\mathbb F_{q^l}$-linear image?. IEJA. January 2023;33(33):77-86. doi:10.24330/ieja.1198011
Chicago Nekooeı, R., and Z. Pourshafıey. “When Do Quasi-Cyclic Codes Have $\mathbb F_{q^l}$-Linear Image?”. International Electronic Journal of Algebra 33, no. 33 (January 2023): 77-86. https://doi.org/10.24330/ieja.1198011.
EndNote Nekooeı R, Pourshafıey Z (January 1, 2023) When do quasi-cyclic codes have $\mathbb F_{q^l}$-linear image?. International Electronic Journal of Algebra 33 33 77–86.
IEEE R. Nekooeı and Z. Pourshafıey, “When do quasi-cyclic codes have $\mathbb F_{q^l}$-linear image?”, IEJA, vol. 33, no. 33, pp. 77–86, 2023, doi: 10.24330/ieja.1198011.
ISNAD Nekooeı, R. - Pourshafıey, Z. “When Do Quasi-Cyclic Codes Have $\mathbb F_{q^l}$-Linear Image?”. International Electronic Journal of Algebra 33/33 (January 2023), 77-86. https://doi.org/10.24330/ieja.1198011.
JAMA Nekooeı R, Pourshafıey Z. When do quasi-cyclic codes have $\mathbb F_{q^l}$-linear image?. IEJA. 2023;33:77–86.
MLA Nekooeı, R. and Z. Pourshafıey. “When Do Quasi-Cyclic Codes Have $\mathbb F_{q^l}$-Linear Image?”. International Electronic Journal of Algebra, vol. 33, no. 33, 2023, pp. 77-86, doi:10.24330/ieja.1198011.
Vancouver Nekooeı R, Pourshafıey Z. When do quasi-cyclic codes have $\mathbb F_{q^l}$-linear image?. IEJA. 2023;33(33):77-86.