Research Article
BibTex RIS Cite
Year 2023, Volume: 33 Issue: 33, 54 - 76, 09.01.2023
https://doi.org/10.24330/ieja.1224782

Abstract

References

  • D. D. Anderson, S. Chun and J. R. Juett, Module-theoretic generalization of commutative von Neumann regular rings, Comm. Algebra, 47(11) (2019), 4713-4728.
  • D. D. Anderson and J. R. Juett, Endoregular modules, J. Pure Appl. Algebra, 225(1) (2021), 106475 (27 pp).
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Reading, MA, Addison-Wesley, 1969.
  • A. S. Bamunoba, P. I. Kimuli and D. Ssevviiri, Morphic elements in regular near-rings, Kyungpook Math. J., 60(4) (2020), 839-851.
  • A. M. Buhphang, S. Halicioglu, A. Harmanci, K. Hera Singh, H. Y. Kose and M. B. Rege, On rigid modules, East-West J. Math., 15(1) (2013), 70-84.
  • G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc., 216 (1976), 81-90.
  • D. J. Fieldhouse, Pure theories, Math. Ann., 184 (1969), 1-18.
  • N. J. Groenewald and D. Ssevviiri, 2-primal modules, J. Algebra Appl., 12(5) (2013), 1250226 (12 pp).
  • D. Hassanzadeh-Lelekaami and H. Roshan-Shekalgourabi, On regular modules over commutative rings, Bull. Malays. Math. Sci. Soc., 42(2) (2019), 569-583.
  • C. Jayaram and Ü. Tekir, von Neumann regular modules, Comm. Algebra, 46(5) (2018), 2205-2217.
  • H. Khabazian, S. Safaeeyan and M. R. Vedadi, Strongly duo modules and rings, Comm. Algebra, 38(8) (2010), 2832-2842.
  • P. I. Kimuli and D. Ssevviiri, Weakly-morphic modules, Rend. Circ. Mat. Palermo Series 2, (2022), https://doi.org/10.1007/s12215-022-00758-3.
  • A. Kyomuhangi and D. Ssevviiri, The locally nilradical for modules over commutative rings, Beitr. Algebra Geom., 61(4) (2020), 759-769.
  • G. Lee, S. T. Rizvi and C. Roman, Modules whose endomorphism rings are von Neumann regular, Comm. Algebra, 41(11) (2013), 4066-4088.
  • T. K. Lee and Y. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Group, Lecture Notes in Pure and Appl. Math., Dekker, New York, 236 (2004), 365-377.
  • G. Marks, A taxonomy of 2-primal rings, J. Algebra, 266(2) (2003), 494-520.
  • H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1989.
  • A. G. Naoum, Regular multiplication modules, Period. Math. Hungar., 31(2) (1995), 155-162.
  • W. K. Nicholson, On PP-endomorphism rings, Canad. Math. Bull., 36(2) (1993), 227-230.
  • W. K. Nicholson, A Survey of Morphic Modules and Rings, Advances in Ring Theory, (2005), 167-180.
  • W. K. Nicholson and E. Sanchez Campos, Principal rings with the dual of the isomorphism theorem, Glasg. Math. J., 46(1) (2004), 181-191.
  • W. K. Nicholson and E. Sanchez Campos, Rings with the dual of the isomorphism theorem, J. Algebra, 271(1) (2004), 391-406.
  • A. Ç. Özcan, A. Harmanci and P. F. Smith, Duo modules, Glasg. Math. J., 48(3) (2006), 533-545.
  • V. S. Ramamurthi and K. M. Rangaswamy, On finitely injective modules, J. Austral. Math. Soc., 16 (1973), 239-248.
  • H. Sharif, Y. Sharifi and S. Namazi, Rings satisfying the radical formula, Acta Math. Hungar., 71(1-2) (1996), 103-108.
  • M. L. Teply, A note on modules over a commutative regular ring, Proc. Amer. Math. Soc., 29 (1971), 267-268.
  • R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc., 155 (1971), 233-256.
  • J. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc., 163 (1972), 341-355.

Characterizations of regular modules

Year 2023, Volume: 33 Issue: 33, 54 - 76, 09.01.2023
https://doi.org/10.24330/ieja.1224782

Abstract

Different and distinct notions of regularity for modules exist in the literature. When these notions are restricted to commutative rings, they all coincide with the well-known von-Neumann regularity for rings. We give new characterizations of these distinct notions for modules in terms of both (weakly-)morphic modules and reduced modules. Furthermore, module theoretic settings are established where these in general distinct notions turn out to be indistinguishable.

References

  • D. D. Anderson, S. Chun and J. R. Juett, Module-theoretic generalization of commutative von Neumann regular rings, Comm. Algebra, 47(11) (2019), 4713-4728.
  • D. D. Anderson and J. R. Juett, Endoregular modules, J. Pure Appl. Algebra, 225(1) (2021), 106475 (27 pp).
  • F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Reading, MA, Addison-Wesley, 1969.
  • A. S. Bamunoba, P. I. Kimuli and D. Ssevviiri, Morphic elements in regular near-rings, Kyungpook Math. J., 60(4) (2020), 839-851.
  • A. M. Buhphang, S. Halicioglu, A. Harmanci, K. Hera Singh, H. Y. Kose and M. B. Rege, On rigid modules, East-West J. Math., 15(1) (2013), 70-84.
  • G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc., 216 (1976), 81-90.
  • D. J. Fieldhouse, Pure theories, Math. Ann., 184 (1969), 1-18.
  • N. J. Groenewald and D. Ssevviiri, 2-primal modules, J. Algebra Appl., 12(5) (2013), 1250226 (12 pp).
  • D. Hassanzadeh-Lelekaami and H. Roshan-Shekalgourabi, On regular modules over commutative rings, Bull. Malays. Math. Sci. Soc., 42(2) (2019), 569-583.
  • C. Jayaram and Ü. Tekir, von Neumann regular modules, Comm. Algebra, 46(5) (2018), 2205-2217.
  • H. Khabazian, S. Safaeeyan and M. R. Vedadi, Strongly duo modules and rings, Comm. Algebra, 38(8) (2010), 2832-2842.
  • P. I. Kimuli and D. Ssevviiri, Weakly-morphic modules, Rend. Circ. Mat. Palermo Series 2, (2022), https://doi.org/10.1007/s12215-022-00758-3.
  • A. Kyomuhangi and D. Ssevviiri, The locally nilradical for modules over commutative rings, Beitr. Algebra Geom., 61(4) (2020), 759-769.
  • G. Lee, S. T. Rizvi and C. Roman, Modules whose endomorphism rings are von Neumann regular, Comm. Algebra, 41(11) (2013), 4066-4088.
  • T. K. Lee and Y. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Group, Lecture Notes in Pure and Appl. Math., Dekker, New York, 236 (2004), 365-377.
  • G. Marks, A taxonomy of 2-primal rings, J. Algebra, 266(2) (2003), 494-520.
  • H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1989.
  • A. G. Naoum, Regular multiplication modules, Period. Math. Hungar., 31(2) (1995), 155-162.
  • W. K. Nicholson, On PP-endomorphism rings, Canad. Math. Bull., 36(2) (1993), 227-230.
  • W. K. Nicholson, A Survey of Morphic Modules and Rings, Advances in Ring Theory, (2005), 167-180.
  • W. K. Nicholson and E. Sanchez Campos, Principal rings with the dual of the isomorphism theorem, Glasg. Math. J., 46(1) (2004), 181-191.
  • W. K. Nicholson and E. Sanchez Campos, Rings with the dual of the isomorphism theorem, J. Algebra, 271(1) (2004), 391-406.
  • A. Ç. Özcan, A. Harmanci and P. F. Smith, Duo modules, Glasg. Math. J., 48(3) (2006), 533-545.
  • V. S. Ramamurthi and K. M. Rangaswamy, On finitely injective modules, J. Austral. Math. Soc., 16 (1973), 239-248.
  • H. Sharif, Y. Sharifi and S. Namazi, Rings satisfying the radical formula, Acta Math. Hungar., 71(1-2) (1996), 103-108.
  • M. L. Teply, A note on modules over a commutative regular ring, Proc. Amer. Math. Soc., 29 (1971), 267-268.
  • R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc., 155 (1971), 233-256.
  • J. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc., 163 (1972), 341-355.
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Philly Ivan Kimuli This is me

David Ssevviiri This is me

Publication Date January 9, 2023
Published in Issue Year 2023 Volume: 33 Issue: 33

Cite

APA Kimuli, P. I., & Ssevviiri, D. (2023). Characterizations of regular modules. International Electronic Journal of Algebra, 33(33), 54-76. https://doi.org/10.24330/ieja.1224782
AMA Kimuli PI, Ssevviiri D. Characterizations of regular modules. IEJA. January 2023;33(33):54-76. doi:10.24330/ieja.1224782
Chicago Kimuli, Philly Ivan, and David Ssevviiri. “Characterizations of Regular Modules”. International Electronic Journal of Algebra 33, no. 33 (January 2023): 54-76. https://doi.org/10.24330/ieja.1224782.
EndNote Kimuli PI, Ssevviiri D (January 1, 2023) Characterizations of regular modules. International Electronic Journal of Algebra 33 33 54–76.
IEEE P. I. Kimuli and D. Ssevviiri, “Characterizations of regular modules”, IEJA, vol. 33, no. 33, pp. 54–76, 2023, doi: 10.24330/ieja.1224782.
ISNAD Kimuli, Philly Ivan - Ssevviiri, David. “Characterizations of Regular Modules”. International Electronic Journal of Algebra 33/33 (January 2023), 54-76. https://doi.org/10.24330/ieja.1224782.
JAMA Kimuli PI, Ssevviiri D. Characterizations of regular modules. IEJA. 2023;33:54–76.
MLA Kimuli, Philly Ivan and David Ssevviiri. “Characterizations of Regular Modules”. International Electronic Journal of Algebra, vol. 33, no. 33, 2023, pp. 54-76, doi:10.24330/ieja.1224782.
Vancouver Kimuli PI, Ssevviiri D. Characterizations of regular modules. IEJA. 2023;33(33):54-76.