Research Article
BibTex RIS Cite

Graded S-Noetherian Modules

Year 2023, Volume: 33 Issue: 33, 87 - 108, 09.01.2023
https://doi.org/10.24330/ieja.1229782

Abstract

Let $G$ be an abelian group and $S$ a given multiplicatively closed subset of a commutative $G$-graded ring $A$ consisting of homogeneous elements. In this paper, we introduce and study $G$-graded $S$-Noetherian modules which are a generalization of $S$-Noetherian modules. We characterize $G$-graded $S$-Noetherian modules in terms of $S$-Noetherian modules. For instance, a $G$-graded $A$-module $M$ is $G$-graded $S$-Noetherian if and only if $M$ is $S$-Noetherian, provided $G$ is finitely generated and $S$ is countable. Also, we generalize some results on $G$-graded Noetherian rings and modules to $G$-graded $S$-Noetherian rings and modules.

References

  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30(9) (2002), 4407-4416.
  • A. U. Ansari and B. K. Sharma, $G$-graded $S$-Artinian modules and graded $S$-secondary representations, Palest. J. Math., 11(3) (2022), 175-193.
  • J. Baeck, G. Lee and J. W. Lim, $S$-Noetherian rings and their extensions, Taiwanese J. Math., 20 (2016), 1231-1250.
  • Z. Bilgin, M. L. Reyes and Ü. Tekir, On right $S$-Noetherian rings and $S$-Noetherian modules, Comm. Algebra, 46(2) (2018), 863-869.
  • S. Goto and K. Yamagishi, Finite generation of Noetherian graded rings, Proc. Amer. Math. Soc., 89 (1983), 41-44.
  • A. Hamed and H. Sana, Modules satisfying the $S$-Noetherian property and $S$-ACCR, Comm. Algebra, 44(5) (2016), 1941-1951.
  • A. Hamed, $S$-Noetherian spectrum condition, Comm. Algebra, 46(8) (2018), 3314-3321.
  • R. Hazrat, Graded Rings and Graded Grothendieck Groups, London Math. Soc. Lecture Notes Series, v. 435, Cambridge University Press, Cambridge, 2016.
  • B. P. Johnson, Commutative Rings Graded by Abelian Groups, PhD Thesis. The University of Nebraska-Lincoln, 2012.
  • D. K. Kim and J. W. Lim, When are graded rings graded S-Noetherian rings, Mathematics, 8(9) (2020), 1532 (11pp).
  • D. K. Kim and J. W. Lim, The Cohen type theorem and the Eakin-Nagata type theorem for $S$-Noetherian rings revisited, Rocky Mountain J. Math., 50 (2020), 619-630.
  • M. J. Kwon and J. W. Lim, On nonnil-S-Noetherian rings, Mathematics, 8(9) (2020), 1428 (14pp).
  • . W. Lim, A note on $S$-Noetherian domains, Kyungpook Math. J., 55 (2015), 507-€“514.
  • J. W. Lim and D. Y. Oh, $S$-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra, 218 (2014), 1075-1080.
  • J. W. Lim and D. Y. Oh, $S$-Noetherian properties of composite ring extensions, Comm. Algebra, 43 (2015), 2820-2829.
  • J. W. Lim and D. Y. Oh, Chain conditions on composite Hurwitz series rings, Open Math., 15 (2017), 1161-1170.
  • C. N\v{a}st\v{a}sescu and F. Van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library, 28, North-Holland Publishing Co., Amsterdam-New York, 1982. C. N\v{a}st\v{a}sescu and F. Van Oystaeyen, Graded rings with finiteness conditions II, Comm. Algebra, 13(3) (1985), 605-618.
  • C. N\v{a}st\v{a}sescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Math., 1836, Springer-Verlag, Berlin, 2004.
  • E. Noether, Idealtheorie in ringbereichen, Math. Ann., 83 (1921), 24-66.
  • M. Özen, O. A. Nazi, Ü. Tekir and K. P. Shum, Characterization theorems of $S$-Artinian modules, C. R. Acad. Bulgare Sci., 74(4) (2021), 496-505.
  • E. S. Sevim, Ü. Tekir and S. Koç, $S$-Artinian rings and finitely $S$-cogenerated rings, J. Algebra Appl., 19(3) (2020), 2050051 (16 pp).
Year 2023, Volume: 33 Issue: 33, 87 - 108, 09.01.2023
https://doi.org/10.24330/ieja.1229782

Abstract

References

  • D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30(9) (2002), 4407-4416.
  • A. U. Ansari and B. K. Sharma, $G$-graded $S$-Artinian modules and graded $S$-secondary representations, Palest. J. Math., 11(3) (2022), 175-193.
  • J. Baeck, G. Lee and J. W. Lim, $S$-Noetherian rings and their extensions, Taiwanese J. Math., 20 (2016), 1231-1250.
  • Z. Bilgin, M. L. Reyes and Ü. Tekir, On right $S$-Noetherian rings and $S$-Noetherian modules, Comm. Algebra, 46(2) (2018), 863-869.
  • S. Goto and K. Yamagishi, Finite generation of Noetherian graded rings, Proc. Amer. Math. Soc., 89 (1983), 41-44.
  • A. Hamed and H. Sana, Modules satisfying the $S$-Noetherian property and $S$-ACCR, Comm. Algebra, 44(5) (2016), 1941-1951.
  • A. Hamed, $S$-Noetherian spectrum condition, Comm. Algebra, 46(8) (2018), 3314-3321.
  • R. Hazrat, Graded Rings and Graded Grothendieck Groups, London Math. Soc. Lecture Notes Series, v. 435, Cambridge University Press, Cambridge, 2016.
  • B. P. Johnson, Commutative Rings Graded by Abelian Groups, PhD Thesis. The University of Nebraska-Lincoln, 2012.
  • D. K. Kim and J. W. Lim, When are graded rings graded S-Noetherian rings, Mathematics, 8(9) (2020), 1532 (11pp).
  • D. K. Kim and J. W. Lim, The Cohen type theorem and the Eakin-Nagata type theorem for $S$-Noetherian rings revisited, Rocky Mountain J. Math., 50 (2020), 619-630.
  • M. J. Kwon and J. W. Lim, On nonnil-S-Noetherian rings, Mathematics, 8(9) (2020), 1428 (14pp).
  • . W. Lim, A note on $S$-Noetherian domains, Kyungpook Math. J., 55 (2015), 507-€“514.
  • J. W. Lim and D. Y. Oh, $S$-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra, 218 (2014), 1075-1080.
  • J. W. Lim and D. Y. Oh, $S$-Noetherian properties of composite ring extensions, Comm. Algebra, 43 (2015), 2820-2829.
  • J. W. Lim and D. Y. Oh, Chain conditions on composite Hurwitz series rings, Open Math., 15 (2017), 1161-1170.
  • C. N\v{a}st\v{a}sescu and F. Van Oystaeyen, Graded Ring Theory, North-Holland Mathematical Library, 28, North-Holland Publishing Co., Amsterdam-New York, 1982. C. N\v{a}st\v{a}sescu and F. Van Oystaeyen, Graded rings with finiteness conditions II, Comm. Algebra, 13(3) (1985), 605-618.
  • C. N\v{a}st\v{a}sescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Math., 1836, Springer-Verlag, Berlin, 2004.
  • E. Noether, Idealtheorie in ringbereichen, Math. Ann., 83 (1921), 24-66.
  • M. Özen, O. A. Nazi, Ü. Tekir and K. P. Shum, Characterization theorems of $S$-Artinian modules, C. R. Acad. Bulgare Sci., 74(4) (2021), 496-505.
  • E. S. Sevim, Ü. Tekir and S. Koç, $S$-Artinian rings and finitely $S$-cogenerated rings, J. Algebra Appl., 19(3) (2020), 2050051 (16 pp).
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ajim Uddin Ansarı This is me

B. K. Sharma This is me

Publication Date January 9, 2023
Published in Issue Year 2023 Volume: 33 Issue: 33

Cite

APA Ansarı, A. U., & Sharma, B. K. (2023). Graded S-Noetherian Modules. International Electronic Journal of Algebra, 33(33), 87-108. https://doi.org/10.24330/ieja.1229782
AMA Ansarı AU, Sharma BK. Graded S-Noetherian Modules. IEJA. January 2023;33(33):87-108. doi:10.24330/ieja.1229782
Chicago Ansarı, Ajim Uddin, and B. K. Sharma. “Graded S-Noetherian Modules”. International Electronic Journal of Algebra 33, no. 33 (January 2023): 87-108. https://doi.org/10.24330/ieja.1229782.
EndNote Ansarı AU, Sharma BK (January 1, 2023) Graded S-Noetherian Modules. International Electronic Journal of Algebra 33 33 87–108.
IEEE A. U. Ansarı and B. K. Sharma, “Graded S-Noetherian Modules”, IEJA, vol. 33, no. 33, pp. 87–108, 2023, doi: 10.24330/ieja.1229782.
ISNAD Ansarı, Ajim Uddin - Sharma, B. K. “Graded S-Noetherian Modules”. International Electronic Journal of Algebra 33/33 (January 2023), 87-108. https://doi.org/10.24330/ieja.1229782.
JAMA Ansarı AU, Sharma BK. Graded S-Noetherian Modules. IEJA. 2023;33:87–108.
MLA Ansarı, Ajim Uddin and B. K. Sharma. “Graded S-Noetherian Modules”. International Electronic Journal of Algebra, vol. 33, no. 33, 2023, pp. 87-108, doi:10.24330/ieja.1229782.
Vancouver Ansarı AU, Sharma BK. Graded S-Noetherian Modules. IEJA. 2023;33(33):87-108.