Research Article
BibTex RIS Cite
Year 2024, Volume: 35 Issue: 35, 130 - 138, 09.01.2024
https://doi.org/10.24330/ieja.1385160

Abstract

References

  • P. Etingof and S. Gelaki, Some properties of  nite-dimensional semisimple Hopf algebras, Math. Res. Lett., 5(1-2) (1998), 191-197.
  • P. Etingof and S. Gelaki, Quasisymmetric and unipotent tensor categories, Math. Res. Lett., 15(5) (2008), 857-866.
  • P. Etingof, D. Nikshych and V. Ostrik, Fusion categories and homotopy theory, Quantum Topol., 1(3) (2010), 209-273.
  • C. Galindo, Crossed product tensor categories, J. Algebra, 337 (2011), 233-252.
  • A. Mejia Castano and M. Mombelli, Crossed extensions of the corepresentation category of  finite supergroup algebras, Internat. J. Math., 26(9) (2015), 1550067 (26 pp).
  • A. Mejia Castano, Example of (non)-braided tensor categories, Int. Electron. J. Algebra, 27 (2020), 194-205.
  • P. Schauenburg, Bi-Galois objects over the Taft algebras, Israel J. Math., 115 (2000), 101-123.

Extensions of the category of comodules of the Taft algebra

Year 2024, Volume: 35 Issue: 35, 130 - 138, 09.01.2024
https://doi.org/10.24330/ieja.1385160

Abstract

We construct a family of non-equivalent pairwise extensions of the category of comodules of the Taft algebra, which are equivalent to representation categories of non-triangular quasi-Hopf algebras.

References

  • P. Etingof and S. Gelaki, Some properties of  nite-dimensional semisimple Hopf algebras, Math. Res. Lett., 5(1-2) (1998), 191-197.
  • P. Etingof and S. Gelaki, Quasisymmetric and unipotent tensor categories, Math. Res. Lett., 15(5) (2008), 857-866.
  • P. Etingof, D. Nikshych and V. Ostrik, Fusion categories and homotopy theory, Quantum Topol., 1(3) (2010), 209-273.
  • C. Galindo, Crossed product tensor categories, J. Algebra, 337 (2011), 233-252.
  • A. Mejia Castano and M. Mombelli, Crossed extensions of the corepresentation category of  finite supergroup algebras, Internat. J. Math., 26(9) (2015), 1550067 (26 pp).
  • A. Mejia Castano, Example of (non)-braided tensor categories, Int. Electron. J. Algebra, 27 (2020), 194-205.
  • P. Schauenburg, Bi-Galois objects over the Taft algebras, Israel J. Math., 115 (2000), 101-123.
There are 7 citations in total.

Details

Primary Language English
Subjects Category Theory, K Theory, Homological Algebra
Journal Section Articles
Authors

Adriana Mejıa Castano This is me

Early Pub Date November 10, 2023
Publication Date January 9, 2024
Published in Issue Year 2024 Volume: 35 Issue: 35

Cite

APA Mejıa Castano, A. (2024). Extensions of the category of comodules of the Taft algebra. International Electronic Journal of Algebra, 35(35), 130-138. https://doi.org/10.24330/ieja.1385160
AMA Mejıa Castano A. Extensions of the category of comodules of the Taft algebra. IEJA. January 2024;35(35):130-138. doi:10.24330/ieja.1385160
Chicago Mejıa Castano, Adriana. “Extensions of the Category of Comodules of the Taft Algebra”. International Electronic Journal of Algebra 35, no. 35 (January 2024): 130-38. https://doi.org/10.24330/ieja.1385160.
EndNote Mejıa Castano A (January 1, 2024) Extensions of the category of comodules of the Taft algebra. International Electronic Journal of Algebra 35 35 130–138.
IEEE A. Mejıa Castano, “Extensions of the category of comodules of the Taft algebra”, IEJA, vol. 35, no. 35, pp. 130–138, 2024, doi: 10.24330/ieja.1385160.
ISNAD Mejıa Castano, Adriana. “Extensions of the Category of Comodules of the Taft Algebra”. International Electronic Journal of Algebra 35/35 (January 2024), 130-138. https://doi.org/10.24330/ieja.1385160.
JAMA Mejıa Castano A. Extensions of the category of comodules of the Taft algebra. IEJA. 2024;35:130–138.
MLA Mejıa Castano, Adriana. “Extensions of the Category of Comodules of the Taft Algebra”. International Electronic Journal of Algebra, vol. 35, no. 35, 2024, pp. 130-8, doi:10.24330/ieja.1385160.
Vancouver Mejıa Castano A. Extensions of the category of comodules of the Taft algebra. IEJA. 2024;35(35):130-8.