Research Article
BibTex RIS Cite
Year 2025, Volume: 37 Issue: 37, 59 - 69, 14.01.2025
https://doi.org/10.24330/ieja.1480447

Abstract

References

  • E. Bayer-Fluckiger and H. W. Lenstra, Jr., Forms in odd degree extensions and self-dual normal bases, Amer. J. Math., 112(3) (1990), 359-373.
  • R. Elman, N. Karpenko and A. Merkurjev, The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society Colloquium Publications, 56, American Mathematical Society, Providence, RI, 2008.
  • M. A. Elomary and J.-P. Tignol, Classification of quadratic forms over skew fields of characteristic 2, J. Algebra, 240(1) (2001), 366-392.
  • M.-A. Knus, Quadratic and Hermitian Forms Over Rings, Grundlehren der Mathematischen Wissenschaften, 294, Springer-Verlag, Berlin, 1991.
  • M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, 44, American Mathematical Society, Providence, RI, 1998.
  • A. H. Nokhodkar, Hermitian forms and systems of quadratic forms, Doc. Mat., 23 (2018), 747-758.
  • A. H. Nokhodkar, Quadratic descent of hermitian forms, Math. Nachr., 292(10) (2019), 2294-2299.
  • A. H. Nokhodkar, Erratum to the paper “Quadratic descent of hermitian forms”, Math. Nachr., 293(9) (2020), 1836-1838.
  • A. H. Nokhodkar, Applications of systems of quadratic forms to generalised quadratic forms, Bull. Aust. Math. Soc., 102(3) (2020), 374-386.
  • A. Pfister, Quadratic forms with Applications to Algebraic Geometry and Topology, London Mathematical Society Lecture Note Series, 217, Cambridge University Press, Cambridge, 1995.
  • J. Tits, Formes quadratiques, groupes orthogonaux et algebres de Clifford, Invent. Math., 5 (1968), 19-41.

Quadratic descent of generalized quadratic forms

Year 2025, Volume: 37 Issue: 37, 59 - 69, 14.01.2025
https://doi.org/10.24330/ieja.1480447

Abstract

Quadratic descent of generalized quadratic forms over a division algebra with involution of the first kind in characteristic two is investigated. Using the notion of transfer, it is shown that a system of quadratic forms, associated to such a generalized quadratic form, can be used to characterize its descent properties.

References

  • E. Bayer-Fluckiger and H. W. Lenstra, Jr., Forms in odd degree extensions and self-dual normal bases, Amer. J. Math., 112(3) (1990), 359-373.
  • R. Elman, N. Karpenko and A. Merkurjev, The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society Colloquium Publications, 56, American Mathematical Society, Providence, RI, 2008.
  • M. A. Elomary and J.-P. Tignol, Classification of quadratic forms over skew fields of characteristic 2, J. Algebra, 240(1) (2001), 366-392.
  • M.-A. Knus, Quadratic and Hermitian Forms Over Rings, Grundlehren der Mathematischen Wissenschaften, 294, Springer-Verlag, Berlin, 1991.
  • M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, 44, American Mathematical Society, Providence, RI, 1998.
  • A. H. Nokhodkar, Hermitian forms and systems of quadratic forms, Doc. Mat., 23 (2018), 747-758.
  • A. H. Nokhodkar, Quadratic descent of hermitian forms, Math. Nachr., 292(10) (2019), 2294-2299.
  • A. H. Nokhodkar, Erratum to the paper “Quadratic descent of hermitian forms”, Math. Nachr., 293(9) (2020), 1836-1838.
  • A. H. Nokhodkar, Applications of systems of quadratic forms to generalised quadratic forms, Bull. Aust. Math. Soc., 102(3) (2020), 374-386.
  • A. Pfister, Quadratic forms with Applications to Algebraic Geometry and Topology, London Mathematical Society Lecture Note Series, 217, Cambridge University Press, Cambridge, 1995.
  • J. Tits, Formes quadratiques, groupes orthogonaux et algebres de Clifford, Invent. Math., 5 (1968), 19-41.
There are 11 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Amir Hossein Nokhodkar This is me

Early Pub Date May 8, 2024
Publication Date January 14, 2025
Submission Date November 13, 2023
Acceptance Date April 29, 2024
Published in Issue Year 2025 Volume: 37 Issue: 37

Cite

APA Nokhodkar, A. H. (2025). Quadratic descent of generalized quadratic forms. International Electronic Journal of Algebra, 37(37), 59-69. https://doi.org/10.24330/ieja.1480447
AMA Nokhodkar AH. Quadratic descent of generalized quadratic forms. IEJA. January 2025;37(37):59-69. doi:10.24330/ieja.1480447
Chicago Nokhodkar, Amir Hossein. “Quadratic Descent of Generalized Quadratic Forms”. International Electronic Journal of Algebra 37, no. 37 (January 2025): 59-69. https://doi.org/10.24330/ieja.1480447.
EndNote Nokhodkar AH (January 1, 2025) Quadratic descent of generalized quadratic forms. International Electronic Journal of Algebra 37 37 59–69.
IEEE A. H. Nokhodkar, “Quadratic descent of generalized quadratic forms”, IEJA, vol. 37, no. 37, pp. 59–69, 2025, doi: 10.24330/ieja.1480447.
ISNAD Nokhodkar, Amir Hossein. “Quadratic Descent of Generalized Quadratic Forms”. International Electronic Journal of Algebra 37/37 (January 2025), 59-69. https://doi.org/10.24330/ieja.1480447.
JAMA Nokhodkar AH. Quadratic descent of generalized quadratic forms. IEJA. 2025;37:59–69.
MLA Nokhodkar, Amir Hossein. “Quadratic Descent of Generalized Quadratic Forms”. International Electronic Journal of Algebra, vol. 37, no. 37, 2025, pp. 59-69, doi:10.24330/ieja.1480447.
Vancouver Nokhodkar AH. Quadratic descent of generalized quadratic forms. IEJA. 2025;37(37):59-6.