Research Article
BibTex RIS Cite
Year 2025, Volume: 37 Issue: 37, 233 - 248, 14.01.2025
https://doi.org/10.24330/ieja.1526220

Abstract

References

  • P. Alexandroff, Diskrete raume, Rec. Math. (Mat. Sbornik) N.S., 2(44)(3) (1937), 501-519.
  • M. Ayadi, Twisted pre-Lie algebras of finite topological spaces, Comm. Algebra, 50(5) (2022), 2115-2138.
  • M. Ayadi and D. Manchon, Doubling bialgebras of finite topologies, Lett. Math. Phys., 111(4) (2021), 102 (23 pp).
  • J. S. Carter, J. Scott, S. Kamada and M. Saito, Surfaces in 4-Space, Chapter 5, Springer Science and Business Media, 2012.
  • M. Elhamdadi, Distributivity in quandles and quasigroups, in Algebra, geometry and mathematical physics, Springer Proc. Math. Stat. Springer, Heidelberg, 85 (2014), 325-340.
  • M. Elhamdadi and S. Nelson, Quandles - An Introduction to the Algebra of Knots, Student Mathematical Library 74, Amer. Math. Soc., Providence, 2015.
  • F. Fauvet, L. Foissy and D. Manchon, The Hopf algebra of finite topologies and mould composition, Ann. Inst. Fourier, 67(3) (2017), 911-945.
  • L. Foissy, Twisted bialgebras, cofreeness and cointeraction, arXiv:1905.10199 [math.RA] (2019).
  • B. Ho and S. Nelson, Matrices and finite quandles, Homology Homotopy Appl., 7(1) (2005), 197-208.
  • A. Joyal, Une theorie combinatoire des series formelles, Adv. in Math, 42(1) (1981), 1-82.
  • A. Joyal, Foncteurs analytiques et especes de structures, Combinatoire enumerative (Montreal, Que., 1985/Quebec, Que., 1985), Lecture Notes in Math., 1234 (1986), 126-159.
  • D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra, 23(1) (1982), 37-65.
  • P. Lopes and D. Roseman, On finite racks and quandles, Comm. Algebra, 34(1) (2006), 371-406.
  • S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.), 119(161) (1982), 78-88,
  • R. L. Rubinsztein, Topological quandles and invariants of links, J. Knot Theory Ramifications, 16(6) (2007), 789-808.
  • A. K. Steiner, The lattice of topologies: Structure and complementation, Trans. Amer. Math. Soc., 122 (1966), 379-398.
  • R. E. Stong, Finite topological spaces, Trans. Amer. Math. Soc., 123 (1966), 325-340.
  • R. Vaidyanathaswamy, Set Topology, 2nd ed. Chelsea Publishing Co., New York, 1960.
  • D. N. Yetter, Quandles and monodromy, J. Knot Theory Ramifications, 12(4) (2003), 523-541.

A twisted Hopf algebra of finite topological quandles

Year 2025, Volume: 37 Issue: 37, 233 - 248, 14.01.2025
https://doi.org/10.24330/ieja.1526220

Abstract

This paper describes some algebraic properties of the species of finite topological quandles. We construct two twisted bialgebra structures on this species, one of the first kind and one of the second kind. The obstruction for the structure to match the double twisted bialgebra axioms is explicitly described.

References

  • P. Alexandroff, Diskrete raume, Rec. Math. (Mat. Sbornik) N.S., 2(44)(3) (1937), 501-519.
  • M. Ayadi, Twisted pre-Lie algebras of finite topological spaces, Comm. Algebra, 50(5) (2022), 2115-2138.
  • M. Ayadi and D. Manchon, Doubling bialgebras of finite topologies, Lett. Math. Phys., 111(4) (2021), 102 (23 pp).
  • J. S. Carter, J. Scott, S. Kamada and M. Saito, Surfaces in 4-Space, Chapter 5, Springer Science and Business Media, 2012.
  • M. Elhamdadi, Distributivity in quandles and quasigroups, in Algebra, geometry and mathematical physics, Springer Proc. Math. Stat. Springer, Heidelberg, 85 (2014), 325-340.
  • M. Elhamdadi and S. Nelson, Quandles - An Introduction to the Algebra of Knots, Student Mathematical Library 74, Amer. Math. Soc., Providence, 2015.
  • F. Fauvet, L. Foissy and D. Manchon, The Hopf algebra of finite topologies and mould composition, Ann. Inst. Fourier, 67(3) (2017), 911-945.
  • L. Foissy, Twisted bialgebras, cofreeness and cointeraction, arXiv:1905.10199 [math.RA] (2019).
  • B. Ho and S. Nelson, Matrices and finite quandles, Homology Homotopy Appl., 7(1) (2005), 197-208.
  • A. Joyal, Une theorie combinatoire des series formelles, Adv. in Math, 42(1) (1981), 1-82.
  • A. Joyal, Foncteurs analytiques et especes de structures, Combinatoire enumerative (Montreal, Que., 1985/Quebec, Que., 1985), Lecture Notes in Math., 1234 (1986), 126-159.
  • D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra, 23(1) (1982), 37-65.
  • P. Lopes and D. Roseman, On finite racks and quandles, Comm. Algebra, 34(1) (2006), 371-406.
  • S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.), 119(161) (1982), 78-88,
  • R. L. Rubinsztein, Topological quandles and invariants of links, J. Knot Theory Ramifications, 16(6) (2007), 789-808.
  • A. K. Steiner, The lattice of topologies: Structure and complementation, Trans. Amer. Math. Soc., 122 (1966), 379-398.
  • R. E. Stong, Finite topological spaces, Trans. Amer. Math. Soc., 123 (1966), 325-340.
  • R. Vaidyanathaswamy, Set Topology, 2nd ed. Chelsea Publishing Co., New York, 1960.
  • D. N. Yetter, Quandles and monodromy, J. Knot Theory Ramifications, 12(4) (2003), 523-541.
There are 19 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Mohamed Ayadi This is me

Dominique Manchon This is me

Early Pub Date August 1, 2024
Publication Date January 14, 2025
Submission Date November 20, 2023
Acceptance Date June 27, 2024
Published in Issue Year 2025 Volume: 37 Issue: 37

Cite

APA Ayadi, M., & Manchon, D. (2025). A twisted Hopf algebra of finite topological quandles. International Electronic Journal of Algebra, 37(37), 233-248. https://doi.org/10.24330/ieja.1526220
AMA Ayadi M, Manchon D. A twisted Hopf algebra of finite topological quandles. IEJA. January 2025;37(37):233-248. doi:10.24330/ieja.1526220
Chicago Ayadi, Mohamed, and Dominique Manchon. “A Twisted Hopf Algebra of Finite Topological Quandles”. International Electronic Journal of Algebra 37, no. 37 (January 2025): 233-48. https://doi.org/10.24330/ieja.1526220.
EndNote Ayadi M, Manchon D (January 1, 2025) A twisted Hopf algebra of finite topological quandles. International Electronic Journal of Algebra 37 37 233–248.
IEEE M. Ayadi and D. Manchon, “A twisted Hopf algebra of finite topological quandles”, IEJA, vol. 37, no. 37, pp. 233–248, 2025, doi: 10.24330/ieja.1526220.
ISNAD Ayadi, Mohamed - Manchon, Dominique. “A Twisted Hopf Algebra of Finite Topological Quandles”. International Electronic Journal of Algebra 37/37 (January 2025), 233-248. https://doi.org/10.24330/ieja.1526220.
JAMA Ayadi M, Manchon D. A twisted Hopf algebra of finite topological quandles. IEJA. 2025;37:233–248.
MLA Ayadi, Mohamed and Dominique Manchon. “A Twisted Hopf Algebra of Finite Topological Quandles”. International Electronic Journal of Algebra, vol. 37, no. 37, 2025, pp. 233-48, doi:10.24330/ieja.1526220.
Vancouver Ayadi M, Manchon D. A twisted Hopf algebra of finite topological quandles. IEJA. 2025;37(37):233-48.