Research Article
BibTex RIS Cite
Year 2025, Volume: 37 Issue: 37, 385 - 397, 14.01.2025
https://doi.org/10.24330/ieja.1571460

Abstract

References

  • D. D. Anderson, T. Arabacı, Ü. Tekir and S. Koç, On $S$-multiplication modules, Comm. Algebra, 48(8) (2020), 3398-3407.
  • D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, Algebra Colloq., 19(1) (2012), 1017-1040.
  • A. U. Ansari and B. K. Sharma, Graded $S$-Artinian modules and graded $S$-secondary representations, Palest. J. Math., 11(3) (2022), 175-193.
  • E. Artin, Zur Theorie der hyperkomplexen Zahlen, Abh. Math. Sem. Univ. Hamburg, 5(1) (1927), 251-260.
  • S. E. Atani, Submodules of secondary modules, Int. J. Math. Math. Sci., 31(6) (2002), 321-327.
  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969.
  • A. Barnard, Multiplication modules, J. Algebra, 71(1) (1981), 174-178.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative Algebra and its Applications: Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco, June 23-28, 2008, edited by M. Fontana, S. E. Kabbaj, B. Olberding and I. Swanson, Berlin, New York: De Gruyter, 2009, 155-172.
  • Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(4) (1988), 755-779.
  • R. El Khalfaoui, N. Mahdou, P. Sahandi and N. Shirmohammadi, Amalgamated modules along an ideal, Commun. Korean Math. Soc., 36(1) (2021), 1-10.
  • A. Facchini and Z. Nazemian, Modules with chain conditions up to isomorphism, J. Algebra, 453 (2016), 578-601.
  • C. Jayaram, K. H. Oral and Ü. Tekir, Strongly 0-dimensional rings, Comm. Algebra, 41(6) (2013), 2026-2032.
  • O. Khani-Nasab and A. Hamed, Weakly $S$-Artinian modules, Filomat, 35(15) (2021), 5215-5226.
  • I. G. Macdonald, Secondary representation of modules over a commutative rings, Symposia Mathematica, 11 (1973), 23-43.
  • M. Özen, O. A. Naji, Ü. Tekir and K. P. Shum, Characterization theorems of $S$-Artinian modules, C. R. Acad. Bulgare Sci., 74(4) (2021), 496-505.
  • E. S. Sevim, Ü. Tekir and S. Koç, $S$-Artinian rings and finitely $S$-cogenerated rings, J. Algebra Appl., 19(3) (2020), 2050051 (16 pp).

Artinian* Modules

Year 2025, Volume: 37 Issue: 37, 385 - 397, 14.01.2025
https://doi.org/10.24330/ieja.1571460

Abstract

In this paper, we introduce and study Artinian* modules as a generalization of Artinian modules. We transfer several results of Artinian modules to Artinian* modules. We also provide several characterizations of this new class of modules. Furthermore, we investigate the existence of secondary representation for Artinian* modules over commutative regular rings. Finally, we characterize Artinian* modules in the amalgamated module construction.

References

  • D. D. Anderson, T. Arabacı, Ü. Tekir and S. Koç, On $S$-multiplication modules, Comm. Algebra, 48(8) (2020), 3398-3407.
  • D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, Algebra Colloq., 19(1) (2012), 1017-1040.
  • A. U. Ansari and B. K. Sharma, Graded $S$-Artinian modules and graded $S$-secondary representations, Palest. J. Math., 11(3) (2022), 175-193.
  • E. Artin, Zur Theorie der hyperkomplexen Zahlen, Abh. Math. Sem. Univ. Hamburg, 5(1) (1927), 251-260.
  • S. E. Atani, Submodules of secondary modules, Int. J. Math. Math. Sci., 31(6) (2002), 321-327.
  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969.
  • A. Barnard, Multiplication modules, J. Algebra, 71(1) (1981), 174-178.
  • M. D'Anna, C. A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, Commutative Algebra and its Applications: Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco, June 23-28, 2008, edited by M. Fontana, S. E. Kabbaj, B. Olberding and I. Swanson, Berlin, New York: De Gruyter, 2009, 155-172.
  • Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(4) (1988), 755-779.
  • R. El Khalfaoui, N. Mahdou, P. Sahandi and N. Shirmohammadi, Amalgamated modules along an ideal, Commun. Korean Math. Soc., 36(1) (2021), 1-10.
  • A. Facchini and Z. Nazemian, Modules with chain conditions up to isomorphism, J. Algebra, 453 (2016), 578-601.
  • C. Jayaram, K. H. Oral and Ü. Tekir, Strongly 0-dimensional rings, Comm. Algebra, 41(6) (2013), 2026-2032.
  • O. Khani-Nasab and A. Hamed, Weakly $S$-Artinian modules, Filomat, 35(15) (2021), 5215-5226.
  • I. G. Macdonald, Secondary representation of modules over a commutative rings, Symposia Mathematica, 11 (1973), 23-43.
  • M. Özen, O. A. Naji, Ü. Tekir and K. P. Shum, Characterization theorems of $S$-Artinian modules, C. R. Acad. Bulgare Sci., 74(4) (2021), 496-505.
  • E. S. Sevim, Ü. Tekir and S. Koç, $S$-Artinian rings and finitely $S$-cogenerated rings, J. Algebra Appl., 19(3) (2020), 2050051 (16 pp).
There are 16 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Ajim Uddin Ansari

Hwankoo Kim

Sanjeev Kumar Maurya

Ünsal Tekir

Early Pub Date October 21, 2024
Publication Date January 14, 2025
Submission Date March 8, 2024
Acceptance Date July 26, 2024
Published in Issue Year 2025 Volume: 37 Issue: 37

Cite

APA Ansari, A. U., Kim, H., Maurya, S. K., Tekir, Ü. (2025). Artinian* Modules. International Electronic Journal of Algebra, 37(37), 385-397. https://doi.org/10.24330/ieja.1571460
AMA Ansari AU, Kim H, Maurya SK, Tekir Ü. Artinian* Modules. IEJA. January 2025;37(37):385-397. doi:10.24330/ieja.1571460
Chicago Ansari, Ajim Uddin, Hwankoo Kim, Sanjeev Kumar Maurya, and Ünsal Tekir. “Artinian* Modules”. International Electronic Journal of Algebra 37, no. 37 (January 2025): 385-97. https://doi.org/10.24330/ieja.1571460.
EndNote Ansari AU, Kim H, Maurya SK, Tekir Ü (January 1, 2025) Artinian* Modules. International Electronic Journal of Algebra 37 37 385–397.
IEEE A. U. Ansari, H. Kim, S. K. Maurya, and Ü. Tekir, “Artinian* Modules”, IEJA, vol. 37, no. 37, pp. 385–397, 2025, doi: 10.24330/ieja.1571460.
ISNAD Ansari, Ajim Uddin et al. “Artinian* Modules”. International Electronic Journal of Algebra 37/37 (January 2025), 385-397. https://doi.org/10.24330/ieja.1571460.
JAMA Ansari AU, Kim H, Maurya SK, Tekir Ü. Artinian* Modules. IEJA. 2025;37:385–397.
MLA Ansari, Ajim Uddin et al. “Artinian* Modules”. International Electronic Journal of Algebra, vol. 37, no. 37, 2025, pp. 385-97, doi:10.24330/ieja.1571460.
Vancouver Ansari AU, Kim H, Maurya SK, Tekir Ü. Artinian* Modules. IEJA. 2025;37(37):385-97.