Research Article
BibTex RIS Cite

Year 2025, Volume: 38 Issue: 38, 1 - 11, 14.07.2025
https://doi.org/10.24330/ieja.1575706

Abstract

References

  • W. W. Adams, S. Hosten, P. Loustaunau and J. L. Miller, Sagbi and Sagbi-Gröbner bases over principal ideal domains, J. Symbolic Comput., 27(1) (1999), 31-47.
  • W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994.
  • B. Buchberger, An Algorithm for Finding the Bases of the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal, Ph.D. thesis, University of Innsbruck, Austria, 1965.
  • B. Buchberger and F. Winkler, Gröbner Bases and Applications, London Mathematical Society Lecture Note Series, 251, Cambridge University Press, Cambridge, 1998.
  • M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Springer-Verlag, Berlin, 2000.
  • J. L. Miller, Analogs of Gröbner bases in polynomial rings over a ring, J. Symbolic Comput., 21(2) (1996), 139-153.
  • G. H. Norton and A. Salagean, Strong Gröbner bases for polynomials over a principal ideal ring, Bull. Austral. Math. Soc., 64(3) (2001), 505-528.
  • G. H. Norton and A. Salagean, Gröbner bases and products of coefficient rings, Bull. Austral. Math. Soc., 65(1) (2002), 145-152.
  • L. Robbiano and M. Sweedler, Subalgebra bases, Commutative algebra (Salvador, 1988), Lecture Notes in Math., Springer, Berlin, 1430 (1990), 61-87.
  • M. Stillman and H. Tsai, Using Sagbi bases to compute invariants, J. Pure Appl. Algebra, 139(1-3) (1999), 285-302.
  • O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Graduate Texts in Mathematics, 28, Springer-Verlag, New York-Heidelberg-Berlin, 1975.

Sagbi bases over the product of rings

Year 2025, Volume: 38 Issue: 38, 1 - 11, 14.07.2025
https://doi.org/10.24330/ieja.1575706

Abstract

Let $R$ be a commutative ring such that $R=R_1\times \cdots \times R_n$. In this paper, we give a method to compute (strong) Sagbi bases for subalgebras of a polynomial ring over $R$ provided that these bases are computable in a polynomial ring over $R_i$ for $1\leq i \leq n$. As an application, we prove the existence of strong Sagbi bases for subalgebras in a polynomial ring over a principal ideal ring.

References

  • W. W. Adams, S. Hosten, P. Loustaunau and J. L. Miller, Sagbi and Sagbi-Gröbner bases over principal ideal domains, J. Symbolic Comput., 27(1) (1999), 31-47.
  • W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994.
  • B. Buchberger, An Algorithm for Finding the Bases of the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal, Ph.D. thesis, University of Innsbruck, Austria, 1965.
  • B. Buchberger and F. Winkler, Gröbner Bases and Applications, London Mathematical Society Lecture Note Series, 251, Cambridge University Press, Cambridge, 1998.
  • M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Springer-Verlag, Berlin, 2000.
  • J. L. Miller, Analogs of Gröbner bases in polynomial rings over a ring, J. Symbolic Comput., 21(2) (1996), 139-153.
  • G. H. Norton and A. Salagean, Strong Gröbner bases for polynomials over a principal ideal ring, Bull. Austral. Math. Soc., 64(3) (2001), 505-528.
  • G. H. Norton and A. Salagean, Gröbner bases and products of coefficient rings, Bull. Austral. Math. Soc., 65(1) (2002), 145-152.
  • L. Robbiano and M. Sweedler, Subalgebra bases, Commutative algebra (Salvador, 1988), Lecture Notes in Math., Springer, Berlin, 1430 (1990), 61-87.
  • M. Stillman and H. Tsai, Using Sagbi bases to compute invariants, J. Pure Appl. Algebra, 139(1-3) (1999), 285-302.
  • O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Graduate Texts in Mathematics, 28, Springer-Verlag, New York-Heidelberg-Berlin, 1975.
There are 11 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Nazia Jabeen

Junaid Khan

Early Pub Date October 29, 2024
Publication Date July 14, 2025
Submission Date June 28, 2024
Acceptance Date September 11, 2024
Published in Issue Year 2025 Volume: 38 Issue: 38

Cite

APA Jabeen, N., & Khan, J. (2025). Sagbi bases over the product of rings. International Electronic Journal of Algebra, 38(38), 1-11. https://doi.org/10.24330/ieja.1575706
AMA Jabeen N, Khan J. Sagbi bases over the product of rings. IEJA. July 2025;38(38):1-11. doi:10.24330/ieja.1575706
Chicago Jabeen, Nazia, and Junaid Khan. “Sagbi Bases over the Product of Rings”. International Electronic Journal of Algebra 38, no. 38 (July 2025): 1-11. https://doi.org/10.24330/ieja.1575706.
EndNote Jabeen N, Khan J (July 1, 2025) Sagbi bases over the product of rings. International Electronic Journal of Algebra 38 38 1–11.
IEEE N. Jabeen and J. Khan, “Sagbi bases over the product of rings”, IEJA, vol. 38, no. 38, pp. 1–11, 2025, doi: 10.24330/ieja.1575706.
ISNAD Jabeen, Nazia - Khan, Junaid. “Sagbi Bases over the Product of Rings”. International Electronic Journal of Algebra 38/38 (July2025), 1-11. https://doi.org/10.24330/ieja.1575706.
JAMA Jabeen N, Khan J. Sagbi bases over the product of rings. IEJA. 2025;38:1–11.
MLA Jabeen, Nazia and Junaid Khan. “Sagbi Bases over the Product of Rings”. International Electronic Journal of Algebra, vol. 38, no. 38, 2025, pp. 1-11, doi:10.24330/ieja.1575706.
Vancouver Jabeen N, Khan J. Sagbi bases over the product of rings. IEJA. 2025;38(38):1-11.