Research Article
BibTex RIS Cite

Ideals in hom-associative Weyl algebras

Year 2025, Volume: 38 Issue: 38, 74 - 81, 14.07.2025
https://doi.org/10.24330/ieja.1587178

Abstract

We introduce hom-associative versions of the higher order Weyl algebras, generalizing the construction of the first hom-associative Weyl algebras. We then show that the higher order hom-associative Weyl algebras are simple, and that all their one-sided ideals are principal.

References

  • P. Back and J. Richter, On the hom-associative Weyl algebras, J. Pure Appl. Algebra, 224(9) (2020), 106368 (12 pp).
  • P. Back and J. Richter, The hom-associative Weyl algebras in prime characteristic, Int. Electron. J. Algebra, 31 (2022), 203-229.
  • P. Back, J. Richter and S. Silvestrov, Hom-associative Ore extensions and weak unitalizations, Int. Electron. J. Algebra, 24 (2018), 174-194.
  • J. Dixmier, Sur les algebres de Weyl, Bull. Soc. Math. France, 96 (1968), 209-242.
  • J. Dixmier, Sur les algebres de Weyl II, Bull. Sci. Math., 94 (1970), 289-301.
  • Y. Fregier and A. Gohr, On unitality conditions for Hom-associative algebras, arXiv:0904.4874 [math.RA] (2009).
  • J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295(2) (2006), 314-361.
  • A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2(2) (2008), 51-64.
  • J. T. Stafford, Completely faithful modules and ideals of simple Noetherian rings, Bull. London Math. Soc., 8(2) (1976), 168-173.
  • J. T. Stafford, Module structure of Weyl algebras, J. London Math. Soc., 18(3) (1978), 429-442.
  • D. Yau, Hom-algebras and homology, J. Lie Theory, 19(2) (2009), 409-421.

Year 2025, Volume: 38 Issue: 38, 74 - 81, 14.07.2025
https://doi.org/10.24330/ieja.1587178

Abstract

References

  • P. Back and J. Richter, On the hom-associative Weyl algebras, J. Pure Appl. Algebra, 224(9) (2020), 106368 (12 pp).
  • P. Back and J. Richter, The hom-associative Weyl algebras in prime characteristic, Int. Electron. J. Algebra, 31 (2022), 203-229.
  • P. Back, J. Richter and S. Silvestrov, Hom-associative Ore extensions and weak unitalizations, Int. Electron. J. Algebra, 24 (2018), 174-194.
  • J. Dixmier, Sur les algebres de Weyl, Bull. Soc. Math. France, 96 (1968), 209-242.
  • J. Dixmier, Sur les algebres de Weyl II, Bull. Sci. Math., 94 (1970), 289-301.
  • Y. Fregier and A. Gohr, On unitality conditions for Hom-associative algebras, arXiv:0904.4874 [math.RA] (2009).
  • J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295(2) (2006), 314-361.
  • A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2(2) (2008), 51-64.
  • J. T. Stafford, Completely faithful modules and ideals of simple Noetherian rings, Bull. London Math. Soc., 8(2) (1976), 168-173.
  • J. T. Stafford, Module structure of Weyl algebras, J. London Math. Soc., 18(3) (1978), 429-442.
  • D. Yau, Hom-algebras and homology, J. Lie Theory, 19(2) (2009), 409-421.
There are 11 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Per Back This is me

Johan Richter This is me

Early Pub Date November 18, 2024
Publication Date July 14, 2025
Submission Date March 15, 2024
Acceptance Date October 31, 2024
Published in Issue Year 2025 Volume: 38 Issue: 38

Cite

APA Back, P., & Richter, J. (2025). Ideals in hom-associative Weyl algebras. International Electronic Journal of Algebra, 38(38), 74-81. https://doi.org/10.24330/ieja.1587178
AMA Back P, Richter J. Ideals in hom-associative Weyl algebras. IEJA. July 2025;38(38):74-81. doi:10.24330/ieja.1587178
Chicago Back, Per, and Johan Richter. “Ideals in Hom-Associative Weyl Algebras”. International Electronic Journal of Algebra 38, no. 38 (July 2025): 74-81. https://doi.org/10.24330/ieja.1587178.
EndNote Back P, Richter J (July 1, 2025) Ideals in hom-associative Weyl algebras. International Electronic Journal of Algebra 38 38 74–81.
IEEE P. Back and J. Richter, “Ideals in hom-associative Weyl algebras”, IEJA, vol. 38, no. 38, pp. 74–81, 2025, doi: 10.24330/ieja.1587178.
ISNAD Back, Per - Richter, Johan. “Ideals in Hom-Associative Weyl Algebras”. International Electronic Journal of Algebra 38/38 (July2025), 74-81. https://doi.org/10.24330/ieja.1587178.
JAMA Back P, Richter J. Ideals in hom-associative Weyl algebras. IEJA. 2025;38:74–81.
MLA Back, Per and Johan Richter. “Ideals in Hom-Associative Weyl Algebras”. International Electronic Journal of Algebra, vol. 38, no. 38, 2025, pp. 74-81, doi:10.24330/ieja.1587178.
Vancouver Back P, Richter J. Ideals in hom-associative Weyl algebras. IEJA. 2025;38(38):74-81.