Year 2024,
Volume: 17 Issue: 1, 199 - 206, 23.04.2024
James Hebda
,
Yutaka Ikeda
References
-
[1] Boonnam, N.: A generalized maximal diameter sphere theorem. Tohoku Math. J. 71 145-155 (2019).
-
[2] Gluck H., Singer, D.: Scattering of geodesic fields II. Annals of Math. 110 205-225 (1979).
-
[3] Hebda, J., Ikeda, Y.: Replacing the Lower Curvature Bound in Toponogov’s Comparison Theorem by a Weaker Hypothesis. Tohoku Math. J. 69
305-320 (2017).
-
[4] Hebda, J., Ikeda, Y.: Necessary and Sufficient Conditions for a Triangle Comparison Theorem. Tohoku Math. J. 74 329-364 (2022).
-
[5] Innami, N., K. Shiohama, K., Uneme, Y.: The Alexandrov–Toponogov Comparison Theorem for Radial Curvature. Nihonkai Math. J. 24 57-91
(2013).
-
[6] Itokawa, Y., Machigashira, Y., Shiohama, K.:Generalized Toponogov’s Theorem for manifolds with radial curvature bounded below.
Contemporary Mathematics. 332 121-130 (2003).
-
[7] Shiohama, K., and Tanaka, M.: Compactification and maximal diameter theorem for noncompact manifolds with curvature bounded below.
Mathematische Zeitschrift. 241 341-351 (2002).
-
[8] Sinclair, R., Tanaka, M.: The cut locus of a sphere of revolution and Toponogov’s comparison theorem. Tohoku Math. J. 59 379-399 (2007).
-
[9] Soga, T.: Remarks on the set of poles on a pointed complete surface. Nihonkai Math. J. 22 23-37 (2011).
-
[10] Tanaka, M.: On a characterization of a surface of revolution with many poles. Mem. Fac. Sci. Kyushu Univ. Ser. A 46 251-268(1992).
Generalized Maximal Diameter Theorems
Year 2024,
Volume: 17 Issue: 1, 199 - 206, 23.04.2024
James Hebda
,
Yutaka Ikeda
Abstract
We prove Maximal Diameter Theorems for pointed Riemannian manifolds which are compared to surfaces of revolution with weaker radial attraction.
References
-
[1] Boonnam, N.: A generalized maximal diameter sphere theorem. Tohoku Math. J. 71 145-155 (2019).
-
[2] Gluck H., Singer, D.: Scattering of geodesic fields II. Annals of Math. 110 205-225 (1979).
-
[3] Hebda, J., Ikeda, Y.: Replacing the Lower Curvature Bound in Toponogov’s Comparison Theorem by a Weaker Hypothesis. Tohoku Math. J. 69
305-320 (2017).
-
[4] Hebda, J., Ikeda, Y.: Necessary and Sufficient Conditions for a Triangle Comparison Theorem. Tohoku Math. J. 74 329-364 (2022).
-
[5] Innami, N., K. Shiohama, K., Uneme, Y.: The Alexandrov–Toponogov Comparison Theorem for Radial Curvature. Nihonkai Math. J. 24 57-91
(2013).
-
[6] Itokawa, Y., Machigashira, Y., Shiohama, K.:Generalized Toponogov’s Theorem for manifolds with radial curvature bounded below.
Contemporary Mathematics. 332 121-130 (2003).
-
[7] Shiohama, K., and Tanaka, M.: Compactification and maximal diameter theorem for noncompact manifolds with curvature bounded below.
Mathematische Zeitschrift. 241 341-351 (2002).
-
[8] Sinclair, R., Tanaka, M.: The cut locus of a sphere of revolution and Toponogov’s comparison theorem. Tohoku Math. J. 59 379-399 (2007).
-
[9] Soga, T.: Remarks on the set of poles on a pointed complete surface. Nihonkai Math. J. 22 23-37 (2011).
-
[10] Tanaka, M.: On a characterization of a surface of revolution with many poles. Mem. Fac. Sci. Kyushu Univ. Ser. A 46 251-268(1992).