Research Article
BibTex RIS Cite

On Locally Conformal Kaehler Submersions

Year 2024, , 507 - 518, 27.10.2024
https://doi.org/10.36890/iejg.1461324

Abstract

We study locally conformal Kaehler submersions, i.e., almost Hermitian submersions whose total manifolds are locally conformal Kaehler. We prove that the vertical distribution of a locally conformal Kaehler submersion is totally geodesic iff the Lee vector field of total manifold is vertical. We also obtain the O'Neill tensors $\tilde{\mathcal{A}}$ and $\tilde{\mathcal{T}}$ with respect to the Weyl connection of a locally conformal Kaehler submersion. Then, we proved that the horizontal distribution of such a submersion is integrable iff $\tilde{\mathcal{A}} \equiv 0$. Finally, we get Chen-Ricci inequalities for locally conformal Kaehler space form submersions and Hopf space form submersions.

References

  • [1] Chen, B.Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math. J., 41, 33-41 (1999).
  • [2] Deng, S.: An improved Chen-Ricci inequality. Int. Elec. J. Geom., 2(2), 39-45 (2009).
  • [3] Dragomir, S.: Generalized Hopf manifolds locally conformal Kahler structures and real hypersurfaces. Kodai Math. J., 14, 366-391 (1991).
  • [4] Dragomir, S., Ornea, L.: Locally conformal Kahler geometry. Boston, Basel, Berlin: Birkhauser (1998).
  • [5] Falcitelli, M., Lanus, S., Pastore, A.M.: Riemannian Submersion and Related Topics. Singapore: Worl Scientific Publishing Co. Pte. Ltd. (2004).
  • [6] Gray , A.:Pseudo-Riemannian Almost Product Manifolds and Submersions. Journal of Mathematics and Mechanics, 16 (7), 715-737 (1967).
  • [7] Eells, J., Sampson, J.H: Harmonic Mapping of Riemannian Manifolds, Amer. J. Math., 109-160 (1964).
  • [8] Marrero, J.C., Rocha, J.: Locally conformal Kaehler submersions. Geom. Dedicata., 52(3), 271-289 (1994).
  • [9] Musso, E.: Submersioni localmente conformemente Kahleriane. Boll. Unione Mat. It., 7 3-A, 171-176 (1989).
  • [10] O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J., 13, 458-469 (1966).
  • [11] Vaisman, I. On locally conformal almost Kahler manifolds, Israel Journal of Mathematics, 24 (3-4), 338-351. (1976).
  • [12] Vilms, J.: Totally geodesic maps. J. Differential Geom., 4, 73-79 (1970).
  • [13] Watson, B.: Almost Hermitian submersions. J. Differ. Geom., 11(1), 147-165 (1976).
Year 2024, , 507 - 518, 27.10.2024
https://doi.org/10.36890/iejg.1461324

Abstract

References

  • [1] Chen, B.Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math. J., 41, 33-41 (1999).
  • [2] Deng, S.: An improved Chen-Ricci inequality. Int. Elec. J. Geom., 2(2), 39-45 (2009).
  • [3] Dragomir, S.: Generalized Hopf manifolds locally conformal Kahler structures and real hypersurfaces. Kodai Math. J., 14, 366-391 (1991).
  • [4] Dragomir, S., Ornea, L.: Locally conformal Kahler geometry. Boston, Basel, Berlin: Birkhauser (1998).
  • [5] Falcitelli, M., Lanus, S., Pastore, A.M.: Riemannian Submersion and Related Topics. Singapore: Worl Scientific Publishing Co. Pte. Ltd. (2004).
  • [6] Gray , A.:Pseudo-Riemannian Almost Product Manifolds and Submersions. Journal of Mathematics and Mechanics, 16 (7), 715-737 (1967).
  • [7] Eells, J., Sampson, J.H: Harmonic Mapping of Riemannian Manifolds, Amer. J. Math., 109-160 (1964).
  • [8] Marrero, J.C., Rocha, J.: Locally conformal Kaehler submersions. Geom. Dedicata., 52(3), 271-289 (1994).
  • [9] Musso, E.: Submersioni localmente conformemente Kahleriane. Boll. Unione Mat. It., 7 3-A, 171-176 (1989).
  • [10] O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J., 13, 458-469 (1966).
  • [11] Vaisman, I. On locally conformal almost Kahler manifolds, Israel Journal of Mathematics, 24 (3-4), 338-351. (1976).
  • [12] Vilms, J.: Totally geodesic maps. J. Differential Geom., 4, 73-79 (1970).
  • [13] Watson, B.: Almost Hermitian submersions. J. Differ. Geom., 11(1), 147-165 (1976).
There are 13 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Çağrıhan Çimen 0009-0000-6331-9615

Beran Pirinççi 0000-0002-4692-9590

Hakan Mete Taştan 0000-0002-0773-9305

Deniz Ulusoy 0000-0002-0742-4047

Early Pub Date September 20, 2024
Publication Date October 27, 2024
Submission Date April 25, 2024
Acceptance Date July 22, 2024
Published in Issue Year 2024

Cite

APA Çimen, Ç., Pirinççi, B., Taştan, H. M., Ulusoy, D. (2024). On Locally Conformal Kaehler Submersions. International Electronic Journal of Geometry, 17(2), 507-518. https://doi.org/10.36890/iejg.1461324
AMA Çimen Ç, Pirinççi B, Taştan HM, Ulusoy D. On Locally Conformal Kaehler Submersions. Int. Electron. J. Geom. October 2024;17(2):507-518. doi:10.36890/iejg.1461324
Chicago Çimen, Çağrıhan, Beran Pirinççi, Hakan Mete Taştan, and Deniz Ulusoy. “On Locally Conformal Kaehler Submersions”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 507-18. https://doi.org/10.36890/iejg.1461324.
EndNote Çimen Ç, Pirinççi B, Taştan HM, Ulusoy D (October 1, 2024) On Locally Conformal Kaehler Submersions. International Electronic Journal of Geometry 17 2 507–518.
IEEE Ç. Çimen, B. Pirinççi, H. M. Taştan, and D. Ulusoy, “On Locally Conformal Kaehler Submersions”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 507–518, 2024, doi: 10.36890/iejg.1461324.
ISNAD Çimen, Çağrıhan et al. “On Locally Conformal Kaehler Submersions”. International Electronic Journal of Geometry 17/2 (October 2024), 507-518. https://doi.org/10.36890/iejg.1461324.
JAMA Çimen Ç, Pirinççi B, Taştan HM, Ulusoy D. On Locally Conformal Kaehler Submersions. Int. Electron. J. Geom. 2024;17:507–518.
MLA Çimen, Çağrıhan et al. “On Locally Conformal Kaehler Submersions”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 507-18, doi:10.36890/iejg.1461324.
Vancouver Çimen Ç, Pirinççi B, Taştan HM, Ulusoy D. On Locally Conformal Kaehler Submersions. Int. Electron. J. Geom. 2024;17(2):507-18.