Research Article
BibTex RIS Cite

Closing Theorems for Circle Chains

Year 2025, Volume: 18 Issue: 2, 259 - 276, 19.10.2025
https://doi.org/10.36890/iejg.1624214

Abstract

We consider closed chains of circles $C_1,C_2,\ldots,C_n,C_{n+1}=C_1$ such that two neighbouring circles $C_i,C_{i+1}$ intersect or touch each other with $A_i$ being a common point. We formulate conditions such that a polygon with vertices $X_i$ on $C_i$, and $A_i$ on the (extended) side $X_iX_{i+1}$, is closed for every position of the starting point $X_1$ on $C_1$. Similar results apply to open chains of circles. It turns out that the intersection of the sides $X_iX_{i+1}$ and $X_jX_{j+1}$ of the polygon lies on a circle $C_{ij}$ through $A_i$ and $A_j$ with the property that $C_{ij}, C_{jk}$ and $C_{ki}$ pass through a common point. The six circles theorem of Miquel and Steiner's quadrilateral Theorem appear as special cases of the general results.

References

  • Bottema, O.: Ein Schliessungssatz für zwei Kreise. Elem. Math., 20, 1-7 (1965).
  • Bramato, M. and Hungerbühler, N.: Closing theorems for perspectivities in space. Glob. J. Adv. Res. Class. Mod. Geom., 13(2), 177-190 (2024).
  • Coxeter, H. S. M.: Introduction to geometry. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1989. Reprint of the 1969 edition.
  • Dragovic, V. and Radnovic, M.: Poncelet porisms and beyond. Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel (2011). Integrable billiards, hyperelliptic Jacobians and pencils of quadrics.
  • Emch, A.: An application of elliptic functions to Peaucellier’s link-work (inversor). Ann. of Math., 2(1-4), 60-63( 1900/01).
  • Flatto, L.: Poncelet’s theorem. American Mathematical Society, Providence, RI, (2009).
  • K. Guy, R.:The lighthouse theorem, Morley & Malfatti—a budget of paradoxes. Amer. Math. Monthly, 114(2), 97–141 (2007).
  • Halbeisen, L. and Hungerbühler, N.: A simple proof of Poncelet’s theorem (on the occasion of its bicentennial). Amer. Math. Monthly, 122(6), 537-551 (2015).
  • Halbeisen, L., Hungerbühler, N. and Loureiro, V.: The hidden twin of Morley’s five circles theorem. Amer. Math. Monthly, 130(10), 879-892 (2023).
  • Halbeisen, L., Hungerbühler, N. and Schiltknecht, M.: Reversion porisms in conics. Int. Electron. J. Geom., 14(2), 371-382 (2021).
  • Humenberge, H.: Similarity of quadrilaterals as starting point for a geometric journey to orthocentric systems and conics. Elem. Math., 79(4), 148-158 (2024).
  • Hungerbühler, N.: Pappus porisms on a set of lines. Glob. J. Adv. Res. Class. Mod. Geom., 11(1),30-44 (2022).
  • Hungerbühler, N.: The lively siblings of the pentagon theorem. J. Geom., 114, Paper No. 20 (2023).
  • Hungerbühler, N. and Läuchli, J.: Construction of a quadrilateral from its vertex angles and the diagonal angle. Elem. Math. 79(4), 159-166 (2024).
  • Miquel, A.: Sur les intersections des cercles et des spheres. J. Math. Pures Appl., 3, 517-522 (1838).
  • Miquel, A.:Théorèmes de géométrie. J. Math. Pures Appl., 3, 485-487 (1838).
  • Morley, F.: On reflexive geometry. Trans. Amer. Math. Soc., 8(1), 14-24 (1907).
  • Morley, F.: Extensions of Clifford’s Chain-Theorem. Amer. J. Math., 51(3),465-472 (1929).
  • Steiner, J.: Questions proposées. théorème sur le quadrilatère complet. Ann. Math. Pures Appl., 18, 302-304 ( 1827/1828).

Year 2025, Volume: 18 Issue: 2, 259 - 276, 19.10.2025
https://doi.org/10.36890/iejg.1624214

Abstract

References

  • Bottema, O.: Ein Schliessungssatz für zwei Kreise. Elem. Math., 20, 1-7 (1965).
  • Bramato, M. and Hungerbühler, N.: Closing theorems for perspectivities in space. Glob. J. Adv. Res. Class. Mod. Geom., 13(2), 177-190 (2024).
  • Coxeter, H. S. M.: Introduction to geometry. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1989. Reprint of the 1969 edition.
  • Dragovic, V. and Radnovic, M.: Poncelet porisms and beyond. Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel (2011). Integrable billiards, hyperelliptic Jacobians and pencils of quadrics.
  • Emch, A.: An application of elliptic functions to Peaucellier’s link-work (inversor). Ann. of Math., 2(1-4), 60-63( 1900/01).
  • Flatto, L.: Poncelet’s theorem. American Mathematical Society, Providence, RI, (2009).
  • K. Guy, R.:The lighthouse theorem, Morley & Malfatti—a budget of paradoxes. Amer. Math. Monthly, 114(2), 97–141 (2007).
  • Halbeisen, L. and Hungerbühler, N.: A simple proof of Poncelet’s theorem (on the occasion of its bicentennial). Amer. Math. Monthly, 122(6), 537-551 (2015).
  • Halbeisen, L., Hungerbühler, N. and Loureiro, V.: The hidden twin of Morley’s five circles theorem. Amer. Math. Monthly, 130(10), 879-892 (2023).
  • Halbeisen, L., Hungerbühler, N. and Schiltknecht, M.: Reversion porisms in conics. Int. Electron. J. Geom., 14(2), 371-382 (2021).
  • Humenberge, H.: Similarity of quadrilaterals as starting point for a geometric journey to orthocentric systems and conics. Elem. Math., 79(4), 148-158 (2024).
  • Hungerbühler, N.: Pappus porisms on a set of lines. Glob. J. Adv. Res. Class. Mod. Geom., 11(1),30-44 (2022).
  • Hungerbühler, N.: The lively siblings of the pentagon theorem. J. Geom., 114, Paper No. 20 (2023).
  • Hungerbühler, N. and Läuchli, J.: Construction of a quadrilateral from its vertex angles and the diagonal angle. Elem. Math. 79(4), 159-166 (2024).
  • Miquel, A.: Sur les intersections des cercles et des spheres. J. Math. Pures Appl., 3, 517-522 (1838).
  • Miquel, A.:Théorèmes de géométrie. J. Math. Pures Appl., 3, 485-487 (1838).
  • Morley, F.: On reflexive geometry. Trans. Amer. Math. Soc., 8(1), 14-24 (1907).
  • Morley, F.: Extensions of Clifford’s Chain-Theorem. Amer. J. Math., 51(3),465-472 (1929).
  • Steiner, J.: Questions proposées. théorème sur le quadrilatère complet. Ann. Math. Pures Appl., 18, 302-304 ( 1827/1828).
There are 19 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Article
Authors

Norbert Hungerbühler 0000-0001-6191-0022

Early Pub Date October 13, 2025
Publication Date October 19, 2025
Submission Date January 21, 2025
Acceptance Date May 27, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Hungerbühler, N. (2025). Closing Theorems for Circle Chains. International Electronic Journal of Geometry, 18(2), 259-276. https://doi.org/10.36890/iejg.1624214
AMA Hungerbühler N. Closing Theorems for Circle Chains. Int. Electron. J. Geom. October 2025;18(2):259-276. doi:10.36890/iejg.1624214
Chicago Hungerbühler, Norbert. “Closing Theorems for Circle Chains”. International Electronic Journal of Geometry 18, no. 2 (October 2025): 259-76. https://doi.org/10.36890/iejg.1624214.
EndNote Hungerbühler N (October 1, 2025) Closing Theorems for Circle Chains. International Electronic Journal of Geometry 18 2 259–276.
IEEE N. Hungerbühler, “Closing Theorems for Circle Chains”, Int. Electron. J. Geom., vol. 18, no. 2, pp. 259–276, 2025, doi: 10.36890/iejg.1624214.
ISNAD Hungerbühler, Norbert. “Closing Theorems for Circle Chains”. International Electronic Journal of Geometry 18/2 (October2025), 259-276. https://doi.org/10.36890/iejg.1624214.
JAMA Hungerbühler N. Closing Theorems for Circle Chains. Int. Electron. J. Geom. 2025;18:259–276.
MLA Hungerbühler, Norbert. “Closing Theorems for Circle Chains”. International Electronic Journal of Geometry, vol. 18, no. 2, 2025, pp. 259-76, doi:10.36890/iejg.1624214.
Vancouver Hungerbühler N. Closing Theorems for Circle Chains. Int. Electron. J. Geom. 2025;18(2):259-76.