[1] Bonnet, O., Sur quelque propriétés des lignes géodésiques. Comptes rendus de l’Academie des Sciences 11 (1855), 1311–1313.
[2] Brubaker, N.D. and Suceava, B.D., A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature. Intern. Elec.
J. Geom. 11 (2018), 48–51.
[3] Brubaker, N.D., Camero, J., Rocha Rocha O., Soto, R. and Suceav˘a, B.D., A Curvature Invariant Inspired by Leonhard Euler’s Inequality
R ≥ 2r. Forum Geometricorum 18 (2018) 119–127.
[4] Brzycki, B., Giesler, M.D., Gomez, K., Odom L.H. and Suceav˘a, B.D., A ladder of curvatures for hypersurfaces in the Euclidean ambient
space. Houston J. Math. 40 (2014) 1347–1356.
[5] Calabi, E., On Ricci curvatures and geodesics. Duke Math. J. 34 (1967), 667–676.
[6] Chen, B.-Y., Some pinching and classification theorems for minimal submanifolds. Arch. Math. 60 (1993), 568-578.
[7] Chen, B.-Y., A Riemannian invariant and its applications to submanifold theory. Results Math. 27 (1995), 17-26.
[8] Chen, B.-Y., Some new obstructions to minimal and Lagrangian isometric immersions. Japanese J. Math. 26 (2000), 105-127.
[9] Chen, B.-Y., Pseudo-Riemannian submanifolds, δ-invariants and Applications. World Scientific, 2011.
[10] Conley, C. T. R., Etnyre, R., Gardener, B., Odom L.H. and Suceava, B.D., New Curvature Inequalities for Hypersurfaces in the Euclidean
Ambient Space. Taiwanese J. Math. 17 (2013), 885–895.
[11] Dillen, F., Fastenakels, J. and Van der Veken, J., A pinching theorem for the normal scalar curvature of invariant submanifolds. J. Geom.
Phys. 57 (2007), no. 3, 833–840.
[15] Germain, S., Mémoire sur la courbure des surfaces. J. Reine Angew. Math. 8 (1832), 280–297.
[16] Giugiuc, L.M., Problem 11911. American Mathematical Monthly 123 (2016), p. 504.
[17] Myers, S.B., Riemmannian manifolds with positive curvature. Duke Math. J. 8 (1941), 401–404.
[18] Suceav˘a, B. D., The spread of the shape operator as conformal invariant. J. Inequal. Pure Appl. Math. 4 (2003), article 74.
[19] Suceav˘a, B. D., The amalgamatic curvature and the orthocurvatures of three dimensional hypersurfaces in E4. Publicationes Mathematicae
87 (2015), no. 1-2, 35–46.
[20] Suceav˘a, B.D., A Geometric Interpretation of Curvature Inequalities on Hypersurfaces via Ravi Substitutions in the Euclidean Plane.
Math. Intelligencer 40 (2018), 50–54.
[21] Suceav˘a, B.D. and Vajiac, M. B. Remarks on Chen’s fundamental inequality with classical curvature invariants in Riemannian spaces. An.
Ştiin¸t. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.) 54 (2008), no. 1, 27–37.
A Characterization of Cylinders and an Estimate for Mean Curvature of Convex Euclidean Hypersurfaces Satisfying a Cylindrical Condition
[1] Bonnet, O., Sur quelque propriétés des lignes géodésiques. Comptes rendus de l’Academie des Sciences 11 (1855), 1311–1313.
[2] Brubaker, N.D. and Suceava, B.D., A Geometric Interpretation of Cauchy-Schwarz Inequality in Terms of Casorati Curvature. Intern. Elec.
J. Geom. 11 (2018), 48–51.
[3] Brubaker, N.D., Camero, J., Rocha Rocha O., Soto, R. and Suceav˘a, B.D., A Curvature Invariant Inspired by Leonhard Euler’s Inequality
R ≥ 2r. Forum Geometricorum 18 (2018) 119–127.
[4] Brzycki, B., Giesler, M.D., Gomez, K., Odom L.H. and Suceav˘a, B.D., A ladder of curvatures for hypersurfaces in the Euclidean ambient
space. Houston J. Math. 40 (2014) 1347–1356.
[5] Calabi, E., On Ricci curvatures and geodesics. Duke Math. J. 34 (1967), 667–676.
[6] Chen, B.-Y., Some pinching and classification theorems for minimal submanifolds. Arch. Math. 60 (1993), 568-578.
[7] Chen, B.-Y., A Riemannian invariant and its applications to submanifold theory. Results Math. 27 (1995), 17-26.
[8] Chen, B.-Y., Some new obstructions to minimal and Lagrangian isometric immersions. Japanese J. Math. 26 (2000), 105-127.
[9] Chen, B.-Y., Pseudo-Riemannian submanifolds, δ-invariants and Applications. World Scientific, 2011.
[10] Conley, C. T. R., Etnyre, R., Gardener, B., Odom L.H. and Suceava, B.D., New Curvature Inequalities for Hypersurfaces in the Euclidean
Ambient Space. Taiwanese J. Math. 17 (2013), 885–895.
[11] Dillen, F., Fastenakels, J. and Van der Veken, J., A pinching theorem for the normal scalar curvature of invariant submanifolds. J. Geom.
Phys. 57 (2007), no. 3, 833–840.
[15] Germain, S., Mémoire sur la courbure des surfaces. J. Reine Angew. Math. 8 (1832), 280–297.
[16] Giugiuc, L.M., Problem 11911. American Mathematical Monthly 123 (2016), p. 504.
[17] Myers, S.B., Riemmannian manifolds with positive curvature. Duke Math. J. 8 (1941), 401–404.
[18] Suceav˘a, B. D., The spread of the shape operator as conformal invariant. J. Inequal. Pure Appl. Math. 4 (2003), article 74.
[19] Suceav˘a, B. D., The amalgamatic curvature and the orthocurvatures of three dimensional hypersurfaces in E4. Publicationes Mathematicae
87 (2015), no. 1-2, 35–46.
[20] Suceav˘a, B.D., A Geometric Interpretation of Curvature Inequalities on Hypersurfaces via Ravi Substitutions in the Euclidean Plane.
Math. Intelligencer 40 (2018), 50–54.
[21] Suceav˘a, B.D. and Vajiac, M. B. Remarks on Chen’s fundamental inequality with classical curvature invariants in Riemannian spaces. An.
Ştiin¸t. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.) 54 (2008), no. 1, 27–37.
Giugiuc, L. M., & Suceava, B. D. (2019). A Characterization of Cylinders and an Estimate for Mean Curvature of Convex Euclidean Hypersurfaces Satisfying a Cylindrical Condition. International Electronic Journal of Geometry, 12(1), 57-60. https://doi.org/10.36890/iejg.545755
AMA
Giugiuc LM, Suceava BD. A Characterization of Cylinders and an Estimate for Mean Curvature of Convex Euclidean Hypersurfaces Satisfying a Cylindrical Condition. Int. Electron. J. Geom. March 2019;12(1):57-60. doi:10.36890/iejg.545755
Chicago
Giugiuc, Leonard M., and Bogdan D. Suceava. “A Characterization of Cylinders and an Estimate for Mean Curvature of Convex Euclidean Hypersurfaces Satisfying a Cylindrical Condition”. International Electronic Journal of Geometry 12, no. 1 (March 2019): 57-60. https://doi.org/10.36890/iejg.545755.
EndNote
Giugiuc LM, Suceava BD (March 1, 2019) A Characterization of Cylinders and an Estimate for Mean Curvature of Convex Euclidean Hypersurfaces Satisfying a Cylindrical Condition. International Electronic Journal of Geometry 12 1 57–60.
IEEE
L. M. Giugiuc and B. D. Suceava, “A Characterization of Cylinders and an Estimate for Mean Curvature of Convex Euclidean Hypersurfaces Satisfying a Cylindrical Condition”, Int. Electron. J. Geom., vol. 12, no. 1, pp. 57–60, 2019, doi: 10.36890/iejg.545755.
ISNAD
Giugiuc, Leonard M. - Suceava, Bogdan D. “A Characterization of Cylinders and an Estimate for Mean Curvature of Convex Euclidean Hypersurfaces Satisfying a Cylindrical Condition”. International Electronic Journal of Geometry 12/1 (March 2019), 57-60. https://doi.org/10.36890/iejg.545755.
JAMA
Giugiuc LM, Suceava BD. A Characterization of Cylinders and an Estimate for Mean Curvature of Convex Euclidean Hypersurfaces Satisfying a Cylindrical Condition. Int. Electron. J. Geom. 2019;12:57–60.
MLA
Giugiuc, Leonard M. and Bogdan D. Suceava. “A Characterization of Cylinders and an Estimate for Mean Curvature of Convex Euclidean Hypersurfaces Satisfying a Cylindrical Condition”. International Electronic Journal of Geometry, vol. 12, no. 1, 2019, pp. 57-60, doi:10.36890/iejg.545755.
Vancouver
Giugiuc LM, Suceava BD. A Characterization of Cylinders and an Estimate for Mean Curvature of Convex Euclidean Hypersurfaces Satisfying a Cylindrical Condition. Int. Electron. J. Geom. 2019;12(1):57-60.