[1] Cordero, L.A. and Leon, de M., Horizontal lift of connection to the frame bundle. Boll. Un. Mat. Ital. 6 (1984), 223-240.
[2] Druta-Romaniuc, S.L., Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles. Czechoslovak Math J. 62
(2012), 937-949.
[3] Druta-Romaniuc, S.L., Riemannian almost product and para-Hermitian cotangent bundles of general natural lift type. Acta Math
Hungarica. 139 (2013), 228-244.
[4] Fattayev, H. and Salimov A., Diagonal lifts of metrics to coframe bundle. Proc of IMM of NAS of Azerbaijan. 44 ( 2018), No 2, 328-337.
[5] Kurek, J., On a horizontal lift of a linear connection to the bundle of linear frames. Ann. Univ. Marie Curie-Skladowska. Sectio A. XLI (1987),
31-37.
[6] Mok, K.P., Metrics and connections on the cotangent bundle. Kodai Math. Sem. Rep. 28 (1977), 226-238.
[7] Patterson, E.M. and Walker, A.G., Riemann Extensions. Quart. J. Math. 3 (1952), 19-28.
[8] Rýparová, L. and Mikeš, J., On geodesic bifurcations. Proceedings of the Eighteenth International Conference on Geometry, Integrability
and Quantization, Ivaïlo M. Mladenov, Guowu Meng and Akira Yoshioka, eds. (Sofia: Avangard Prima, 2017), 217-224.
[9] Rýparová, L. and Mikeš, J., Bifurcation of closed geodesics. Proceedings of the Nineteenth International Conference on Geometry,
Integrability and Quantization, Ivaïlo M. Mladenov and Akira Yoshioka, eds. (Sofia: Avangard Prima, 2018), 188-192.
[10] Rýparová, L., Mikeš, J. and Sabykanov, A., On geodesic bifurcations of product spaces. Journal of Mathematical Sciences.(to appear).
[11] Salimov, A., Gezer, A. and Akbulut, K., Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math. 6 (2009), No.2, 135-147.
[12] Salimov, A., Gezer, A. and Aslanci, S., On almost complex structures in the cotangent bundle. Turk J Math. 35 (2011), 187-192.
[13] Salimov, A. and Fattayev, H., On a new class of lifts in the coframe bundle. Comptes rendus de l’Academie bulgare des Sciences. 71 (2018), No
6, 743-750.
[14] Sato, I., Complete lifts from a manifold to its cotangent bundle, Kodai Math. Sem. Rep. 20 (1967), 458-468.
[15] Yano, K. and Kobayashi, S., Prolongations of tensor fields and connections to tangent bundles, I, General theory. J. Math. Soc. Japan. 18
(1966), 94-210.
[16] Yano, K. and Patterson, E.M., Vertical and complete lifts from a manifold to its cotangent bundle. J. Math. Soc. Japan. 19 (1967), 91-113.
[17] Yano K. and Patterson, E.M., Horizontal lift from a manifold to its cotangent bundle. J. Math. Soc. Japan.19 (1967), 185-198.
[18] Yano, K. and Ishihara, S., Tangent and Cotangent Bundles. New York, Marcel Dekker, Inc. 1973.
[1] Cordero, L.A. and Leon, de M., Horizontal lift of connection to the frame bundle. Boll. Un. Mat. Ital. 6 (1984), 223-240.
[2] Druta-Romaniuc, S.L., Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles. Czechoslovak Math J. 62
(2012), 937-949.
[3] Druta-Romaniuc, S.L., Riemannian almost product and para-Hermitian cotangent bundles of general natural lift type. Acta Math
Hungarica. 139 (2013), 228-244.
[4] Fattayev, H. and Salimov A., Diagonal lifts of metrics to coframe bundle. Proc of IMM of NAS of Azerbaijan. 44 ( 2018), No 2, 328-337.
[5] Kurek, J., On a horizontal lift of a linear connection to the bundle of linear frames. Ann. Univ. Marie Curie-Skladowska. Sectio A. XLI (1987),
31-37.
[6] Mok, K.P., Metrics and connections on the cotangent bundle. Kodai Math. Sem. Rep. 28 (1977), 226-238.
[7] Patterson, E.M. and Walker, A.G., Riemann Extensions. Quart. J. Math. 3 (1952), 19-28.
[8] Rýparová, L. and Mikeš, J., On geodesic bifurcations. Proceedings of the Eighteenth International Conference on Geometry, Integrability
and Quantization, Ivaïlo M. Mladenov, Guowu Meng and Akira Yoshioka, eds. (Sofia: Avangard Prima, 2017), 217-224.
[9] Rýparová, L. and Mikeš, J., Bifurcation of closed geodesics. Proceedings of the Nineteenth International Conference on Geometry,
Integrability and Quantization, Ivaïlo M. Mladenov and Akira Yoshioka, eds. (Sofia: Avangard Prima, 2018), 188-192.
[10] Rýparová, L., Mikeš, J. and Sabykanov, A., On geodesic bifurcations of product spaces. Journal of Mathematical Sciences.(to appear).
[11] Salimov, A., Gezer, A. and Akbulut, K., Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math. 6 (2009), No.2, 135-147.
[12] Salimov, A., Gezer, A. and Aslanci, S., On almost complex structures in the cotangent bundle. Turk J Math. 35 (2011), 187-192.
[13] Salimov, A. and Fattayev, H., On a new class of lifts in the coframe bundle. Comptes rendus de l’Academie bulgare des Sciences. 71 (2018), No
6, 743-750.
[14] Sato, I., Complete lifts from a manifold to its cotangent bundle, Kodai Math. Sem. Rep. 20 (1967), 458-468.
[15] Yano, K. and Kobayashi, S., Prolongations of tensor fields and connections to tangent bundles, I, General theory. J. Math. Soc. Japan. 18
(1966), 94-210.
[16] Yano, K. and Patterson, E.M., Vertical and complete lifts from a manifold to its cotangent bundle. J. Math. Soc. Japan. 19 (1967), 91-113.
[17] Yano K. and Patterson, E.M., Horizontal lift from a manifold to its cotangent bundle. J. Math. Soc. Japan.19 (1967), 185-198.
[18] Yano, K. and Ishihara, S., Tangent and Cotangent Bundles. New York, Marcel Dekker, Inc. 1973.
Salimov, A., & Fattayev, H. (2019). Connections On The Coframe Bundle. International Electronic Journal of Geometry, 12(1), 93-101. https://doi.org/10.36890/iejg.545846
AMA
Salimov A, Fattayev H. Connections On The Coframe Bundle. Int. Electron. J. Geom. March 2019;12(1):93-101. doi:10.36890/iejg.545846
Chicago
Salimov, Arif, and Habil Fattayev. “Connections On The Coframe Bundle”. International Electronic Journal of Geometry 12, no. 1 (March 2019): 93-101. https://doi.org/10.36890/iejg.545846.
EndNote
Salimov A, Fattayev H (March 1, 2019) Connections On The Coframe Bundle. International Electronic Journal of Geometry 12 1 93–101.
IEEE
A. Salimov and H. Fattayev, “Connections On The Coframe Bundle”, Int. Electron. J. Geom., vol. 12, no. 1, pp. 93–101, 2019, doi: 10.36890/iejg.545846.
ISNAD
Salimov, Arif - Fattayev, Habil. “Connections On The Coframe Bundle”. International Electronic Journal of Geometry 12/1 (March 2019), 93-101. https://doi.org/10.36890/iejg.545846.
JAMA
Salimov A, Fattayev H. Connections On The Coframe Bundle. Int. Electron. J. Geom. 2019;12:93–101.
MLA
Salimov, Arif and Habil Fattayev. “Connections On The Coframe Bundle”. International Electronic Journal of Geometry, vol. 12, no. 1, 2019, pp. 93-101, doi:10.36890/iejg.545846.
Vancouver
Salimov A, Fattayev H. Connections On The Coframe Bundle. Int. Electron. J. Geom. 2019;12(1):93-101.