Research Article
BibTex RIS Cite
Year 2016, , 78 - 84, 30.04.2016
https://doi.org/10.36890/iejg.591895

Abstract

References

  • [1] Bejancu, A. and Farran, H. R. Geometry of Pseudo-Finsler Submanifolds, Kluwer Academic Publishers, 2000.
  • [2] Bejancu, A. and Farran, H. R. A comparison between the induced and the intrinsic Finsler connections on a Finsler submanifold, Algebras, Groups and Geometrie. 16(1999), no. 1, 11-23.
  • [3] Esrafilian, E. and Salimi Moghaddam, H. R. The Relation Between the Associate Almost Complex Structure to HM′ and(HM′, S, T )−Cartan Connections, SIGMA. 2(2006), 067, 7 pages.
  • [4] Gibbons, G. W. Papadopoulos, G. and Stelle, K. S. HKT and OKT geometries on soliton black hole moduli spaces, Nucl. Phys. B. 508(1997), 623-658.
  • [5] Poon, Y. S. Examples of Hyper-Ka¨hler Connections with Torsion, Vienna, Preprint ESI, 770(1999), 1-7.
  • [6] Salimi Moghaddam, H. R. Randers Metrics of Berwald type on 4-dimensional hypercomplex Lie groups, J. Phys. A: Math. Theor. 42(2009), 095212(7pp).
  • [7] Salimi Moghaddam, H. R. On the Geometry of Some Para-Hypercomplex Lie Groups, Archivum Mathematicom BRNO. 45(2009), 159-170.

Two New Families of Finsler Connections on Even-Dimensional Manifolds

Year 2016, , 78 - 84, 30.04.2016
https://doi.org/10.36890/iejg.591895

Abstract

References

  • [1] Bejancu, A. and Farran, H. R. Geometry of Pseudo-Finsler Submanifolds, Kluwer Academic Publishers, 2000.
  • [2] Bejancu, A. and Farran, H. R. A comparison between the induced and the intrinsic Finsler connections on a Finsler submanifold, Algebras, Groups and Geometrie. 16(1999), no. 1, 11-23.
  • [3] Esrafilian, E. and Salimi Moghaddam, H. R. The Relation Between the Associate Almost Complex Structure to HM′ and(HM′, S, T )−Cartan Connections, SIGMA. 2(2006), 067, 7 pages.
  • [4] Gibbons, G. W. Papadopoulos, G. and Stelle, K. S. HKT and OKT geometries on soliton black hole moduli spaces, Nucl. Phys. B. 508(1997), 623-658.
  • [5] Poon, Y. S. Examples of Hyper-Ka¨hler Connections with Torsion, Vienna, Preprint ESI, 770(1999), 1-7.
  • [6] Salimi Moghaddam, H. R. Randers Metrics of Berwald type on 4-dimensional hypercomplex Lie groups, J. Phys. A: Math. Theor. 42(2009), 095212(7pp).
  • [7] Salimi Moghaddam, H. R. On the Geometry of Some Para-Hypercomplex Lie Groups, Archivum Mathematicom BRNO. 45(2009), 159-170.
There are 7 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

H. R. Salimi Moghaddam

Publication Date April 30, 2016
Published in Issue Year 2016

Cite

APA Moghaddam, H. R. S. (2016). Two New Families of Finsler Connections on Even-Dimensional Manifolds. International Electronic Journal of Geometry, 9(1), 78-84. https://doi.org/10.36890/iejg.591895
AMA Moghaddam HRS. Two New Families of Finsler Connections on Even-Dimensional Manifolds. Int. Electron. J. Geom. April 2016;9(1):78-84. doi:10.36890/iejg.591895
Chicago Moghaddam, H. R. Salimi. “Two New Families of Finsler Connections on Even-Dimensional Manifolds”. International Electronic Journal of Geometry 9, no. 1 (April 2016): 78-84. https://doi.org/10.36890/iejg.591895.
EndNote Moghaddam HRS (April 1, 2016) Two New Families of Finsler Connections on Even-Dimensional Manifolds. International Electronic Journal of Geometry 9 1 78–84.
IEEE H. R. S. Moghaddam, “Two New Families of Finsler Connections on Even-Dimensional Manifolds”, Int. Electron. J. Geom., vol. 9, no. 1, pp. 78–84, 2016, doi: 10.36890/iejg.591895.
ISNAD Moghaddam, H. R. Salimi. “Two New Families of Finsler Connections on Even-Dimensional Manifolds”. International Electronic Journal of Geometry 9/1 (April 2016), 78-84. https://doi.org/10.36890/iejg.591895.
JAMA Moghaddam HRS. Two New Families of Finsler Connections on Even-Dimensional Manifolds. Int. Electron. J. Geom. 2016;9:78–84.
MLA Moghaddam, H. R. Salimi. “Two New Families of Finsler Connections on Even-Dimensional Manifolds”. International Electronic Journal of Geometry, vol. 9, no. 1, 2016, pp. 78-84, doi:10.36890/iejg.591895.
Vancouver Moghaddam HRS. Two New Families of Finsler Connections on Even-Dimensional Manifolds. Int. Electron. J. Geom. 2016;9(1):78-84.