[1] Chen, B.-Y. and Garay, O. J., An extremal class of conformally flat submanifolds in Euclidean
spaces, Acta Math. Hungar., 111(2006), no. 4, 263-303.
[2] Duggal, Krishan L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and
Applications, Kluwer Academic Publishers, Dordrecht, 1996.
[3] Amstrong, M. A., Groups and Symmetry Springer-Verlag New York Inc., 1988.
[4] Chen, G., Lines and Circles in Taxicab Geometry Master Thesis, Department of Mathematics and
Computer Science, Central Missouri State Uni, 1992.
[5] Çolakoğlu, H. B. and Kaya, R., On The Regular Polygons in The Chinese Checker Plane, Appl.
Sci. 10 (2008) 29-37.
[6] Gelişgen, Ö ., Kaya, R. and Özcan, M., Distance Formulae in the Chinese Checker Space, Int.
J. Pure Appl. Math. 26 (2006), no. 1, 35–44.
[7] Geli¸sgen, Ö . and Kaya, R., Alpha(i) Distance in n-dimensional Space, Appl. Sci. 10 (2008),
88–93.
[8] Gelişgen, Ö. and Kaya, R., The Taxicab Space Group, Acta Math. Hungar. 122 (2009), no.
1-2, 187–200.
[9] Kaya, R., Gelişgen, Ö ., Ekmekc¸i S. and Bayar, A., Group of Isometries of CC-Plane, Missouri
J. Math. Sci. 18 (2006) 221–233.
[10] Kaya, R., Geli¸sgen, Ö ., Ekmekçi S. and Bayar, A., On The Group of Isometries of The Plane
with Generalized Absolute Value Metric, Rocky Mountain J. Math. 39 (2009), no. 2, 591–603.
[11] Krause, E. F., Taxicab Geometry Addison - Wesley Publishing Company, Menlo Park, CA, 1975.
[12] Martin, G. E., Transformation Geometry Springer-Verlag New York Inc., 1997.
[13] Schattschneider, D. J., The Taxicab Group, Amer. Math. Monthly 91 (1984) 423-428.
[14] Shen, C. F. C., The Lambda-Geometry Steiner Minimal Tree Problem and Visualization, Phd
Thesis, Department of Mathematics and Computer Science, Central Missouri State Uni, 1997.
[15] So, S. S., Recent Development in Metric Geometry, Proceedings of the 5.th National Geometry
Symposioum, University of Sakarya, (Sakarya), 2005.
[16] Thompson, A. C., Minkowski Geometry Cambridge University Press, 1996.
[1] Chen, B.-Y. and Garay, O. J., An extremal class of conformally flat submanifolds in Euclidean
spaces, Acta Math. Hungar., 111(2006), no. 4, 263-303.
[2] Duggal, Krishan L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and
Applications, Kluwer Academic Publishers, Dordrecht, 1996.
[3] Amstrong, M. A., Groups and Symmetry Springer-Verlag New York Inc., 1988.
[4] Chen, G., Lines and Circles in Taxicab Geometry Master Thesis, Department of Mathematics and
Computer Science, Central Missouri State Uni, 1992.
[5] Çolakoğlu, H. B. and Kaya, R., On The Regular Polygons in The Chinese Checker Plane, Appl.
Sci. 10 (2008) 29-37.
[6] Gelişgen, Ö ., Kaya, R. and Özcan, M., Distance Formulae in the Chinese Checker Space, Int.
J. Pure Appl. Math. 26 (2006), no. 1, 35–44.
[7] Geli¸sgen, Ö . and Kaya, R., Alpha(i) Distance in n-dimensional Space, Appl. Sci. 10 (2008),
88–93.
[8] Gelişgen, Ö. and Kaya, R., The Taxicab Space Group, Acta Math. Hungar. 122 (2009), no.
1-2, 187–200.
[9] Kaya, R., Gelişgen, Ö ., Ekmekc¸i S. and Bayar, A., Group of Isometries of CC-Plane, Missouri
J. Math. Sci. 18 (2006) 221–233.
[10] Kaya, R., Geli¸sgen, Ö ., Ekmekçi S. and Bayar, A., On The Group of Isometries of The Plane
with Generalized Absolute Value Metric, Rocky Mountain J. Math. 39 (2009), no. 2, 591–603.
[11] Krause, E. F., Taxicab Geometry Addison - Wesley Publishing Company, Menlo Park, CA, 1975.
[12] Martin, G. E., Transformation Geometry Springer-Verlag New York Inc., 1997.
[13] Schattschneider, D. J., The Taxicab Group, Amer. Math. Monthly 91 (1984) 423-428.
[14] Shen, C. F. C., The Lambda-Geometry Steiner Minimal Tree Problem and Visualization, Phd
Thesis, Department of Mathematics and Computer Science, Central Missouri State Uni, 1997.
[15] So, S. S., Recent Development in Metric Geometry, Proceedings of the 5.th National Geometry
Symposioum, University of Sakarya, (Sakarya), 2005.
[16] Thompson, A. C., Minkowski Geometry Cambridge University Press, 1996.
Gelişgen, Ö., & Kaya, R. (2015). THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. International Electronic Journal of Geometry, 8(2), 82-96. https://doi.org/10.36890/iejg.592291
AMA
Gelişgen Ö, Kaya R. THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. Int. Electron. J. Geom. October 2015;8(2):82-96. doi:10.36890/iejg.592291
Chicago
Gelişgen, Özcan, and Rüstem Kaya. “THE ISOMETRY GROUP OF CHINESE CHECKER SPACE”. International Electronic Journal of Geometry 8, no. 2 (October 2015): 82-96. https://doi.org/10.36890/iejg.592291.
EndNote
Gelişgen Ö, Kaya R (October 1, 2015) THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. International Electronic Journal of Geometry 8 2 82–96.
IEEE
Ö. Gelişgen and R. Kaya, “THE ISOMETRY GROUP OF CHINESE CHECKER SPACE”, Int. Electron. J. Geom., vol. 8, no. 2, pp. 82–96, 2015, doi: 10.36890/iejg.592291.
ISNAD
Gelişgen, Özcan - Kaya, Rüstem. “THE ISOMETRY GROUP OF CHINESE CHECKER SPACE”. International Electronic Journal of Geometry 8/2 (October 2015), 82-96. https://doi.org/10.36890/iejg.592291.
JAMA
Gelişgen Ö, Kaya R. THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. Int. Electron. J. Geom. 2015;8:82–96.
MLA
Gelişgen, Özcan and Rüstem Kaya. “THE ISOMETRY GROUP OF CHINESE CHECKER SPACE”. International Electronic Journal of Geometry, vol. 8, no. 2, 2015, pp. 82-96, doi:10.36890/iejg.592291.
Vancouver
Gelişgen Ö, Kaya R. THE ISOMETRY GROUP OF CHINESE CHECKER SPACE. Int. Electron. J. Geom. 2015;8(2):82-96.