[5] Chen, B.-Y., Eigenvalue of a natural operator of centro-affine and graph
hypersurfaces, Beitr¨age Algebra Geom. 47 (2006), no. 1, 15–27.
[6] Chen, B.-Y., Realizations of Robertson-Walker space-times as affine hypersurfaces, J. Phys.
A, 40 (2007), 4241–4250.
[7] Chen, B.-Y., Pseudo-Riemannian Geometry, δ-invariants and Applications, World Scientific,
Hackensack, NJ, 2011.
[8] Chen, B.-Y., Total Mean Curvature and Submanifolds of Finite Type. Second Edition, World
Scientific, Hackensack, NJ, 2015.
[9] Chen, B.-Y., Dillen, F. and Verstraelen, L., δ-invariants and their applications to
centroaffine geometry, Differential Geom. Appl. 22 (2005), 341–354.
[10] Dillen, F. and Vrancken, L., Calabi-type composition of affine spheres, Differential Geom.
Appl. 4 (1994), 303–328.
[11] Dillen, F. and Vrancken, L., Improper affine spheres and δ-invariants, PDEs, submanifolds and
affine differential geometry, 157–162, Banach Center Publ., 69, Polish Acad. Sci. Inst. Math.,
Warsaw, 2005.
[12] Li, A.-M., Simon, U. and Zhao, G., Global Affine Differential Geometry of Hypersurfaces,
Expositions in Mathematics, 11, Walter de Gruyter, Berlin-New York, 1993.
[13] Nomizu, K. and Pinkall, U., On the geometry of affine immersions, Math. Z. 195 (1987),
165–178.
[14] Nomizu, K. and Sasaki, T., Affine Differential Geometry. Geometry of Affine Immersions,
Cambridge Tracts in Math. no. 111 (Cambridge University Press, 1994).
[15] Opozda, B., Some relations between Riemannian and affine geometry, Geom. Dedicata 47
(1993), 225–236.
[16] Scharlach, C., Simon, U., Verstraelen, L. and Vrancken, L., A new intrinsic curvature
invariant for centroaffine hypersurfaces, Beitr¨age Algebra Geom. 38 (1997), no. 2, 437–458.
[17] Simon, U., Schwenk-Schellschmidt, A. and Viesel, H., Introduction to the Affine Differential
Geometry of Hypersurfaces, Science University of Tokyo, 1991.
[18] Vrancken, L., The Magid-Ryan conjecture for equiaffine hyperspheres with constant sectional
curvature, J. Differential Geom. 54 (2000), 99–138.
[5] Chen, B.-Y., Eigenvalue of a natural operator of centro-affine and graph
hypersurfaces, Beitr¨age Algebra Geom. 47 (2006), no. 1, 15–27.
[6] Chen, B.-Y., Realizations of Robertson-Walker space-times as affine hypersurfaces, J. Phys.
A, 40 (2007), 4241–4250.
[7] Chen, B.-Y., Pseudo-Riemannian Geometry, δ-invariants and Applications, World Scientific,
Hackensack, NJ, 2011.
[8] Chen, B.-Y., Total Mean Curvature and Submanifolds of Finite Type. Second Edition, World
Scientific, Hackensack, NJ, 2015.
[9] Chen, B.-Y., Dillen, F. and Verstraelen, L., δ-invariants and their applications to
centroaffine geometry, Differential Geom. Appl. 22 (2005), 341–354.
[10] Dillen, F. and Vrancken, L., Calabi-type composition of affine spheres, Differential Geom.
Appl. 4 (1994), 303–328.
[11] Dillen, F. and Vrancken, L., Improper affine spheres and δ-invariants, PDEs, submanifolds and
affine differential geometry, 157–162, Banach Center Publ., 69, Polish Acad. Sci. Inst. Math.,
Warsaw, 2005.
[12] Li, A.-M., Simon, U. and Zhao, G., Global Affine Differential Geometry of Hypersurfaces,
Expositions in Mathematics, 11, Walter de Gruyter, Berlin-New York, 1993.
[13] Nomizu, K. and Pinkall, U., On the geometry of affine immersions, Math. Z. 195 (1987),
165–178.
[14] Nomizu, K. and Sasaki, T., Affine Differential Geometry. Geometry of Affine Immersions,
Cambridge Tracts in Math. no. 111 (Cambridge University Press, 1994).
[15] Opozda, B., Some relations between Riemannian and affine geometry, Geom. Dedicata 47
(1993), 225–236.
[16] Scharlach, C., Simon, U., Verstraelen, L. and Vrancken, L., A new intrinsic curvature
invariant for centroaffine hypersurfaces, Beitr¨age Algebra Geom. 38 (1997), no. 2, 437–458.
[17] Simon, U., Schwenk-Schellschmidt, A. and Viesel, H., Introduction to the Affine Differential
Geometry of Hypersurfaces, Science University of Tokyo, 1991.
[18] Vrancken, L., The Magid-Ryan conjecture for equiaffine hyperspheres with constant sectional
curvature, J. Differential Geom. 54 (2000), 99–138.
Chen, B.-y. (2015). EINSTEIN MANIFOLDS AS AFFINE HYPERSURFACES. International Electronic Journal of Geometry, 8(1), 33-44. https://doi.org/10.36890/iejg.592795
AMA
Chen By. EINSTEIN MANIFOLDS AS AFFINE HYPERSURFACES. Int. Electron. J. Geom. April 2015;8(1):33-44. doi:10.36890/iejg.592795
Chicago
Chen, Bang-yen. “EINSTEIN MANIFOLDS AS AFFINE HYPERSURFACES”. International Electronic Journal of Geometry 8, no. 1 (April 2015): 33-44. https://doi.org/10.36890/iejg.592795.
EndNote
Chen B-y (April 1, 2015) EINSTEIN MANIFOLDS AS AFFINE HYPERSURFACES. International Electronic Journal of Geometry 8 1 33–44.
IEEE
B.-y. Chen, “EINSTEIN MANIFOLDS AS AFFINE HYPERSURFACES”, Int. Electron. J. Geom., vol. 8, no. 1, pp. 33–44, 2015, doi: 10.36890/iejg.592795.
ISNAD
Chen, Bang-yen. “EINSTEIN MANIFOLDS AS AFFINE HYPERSURFACES”. International Electronic Journal of Geometry 8/1 (April 2015), 33-44. https://doi.org/10.36890/iejg.592795.
JAMA
Chen B-y. EINSTEIN MANIFOLDS AS AFFINE HYPERSURFACES. Int. Electron. J. Geom. 2015;8:33–44.
MLA
Chen, Bang-yen. “EINSTEIN MANIFOLDS AS AFFINE HYPERSURFACES”. International Electronic Journal of Geometry, vol. 8, no. 1, 2015, pp. 33-44, doi:10.36890/iejg.592795.
Vancouver
Chen B-y. EINSTEIN MANIFOLDS AS AFFINE HYPERSURFACES. Int. Electron. J. Geom. 2015;8(1):33-44.