Research Article
BibTex RIS Cite
Year 2014, , 84 - 91, 30.10.2014
https://doi.org/10.36890/iejg.593986

Abstract

References

  • [1] Ali, A. T. Position vectors of slant helices in Euclidean 3-space. Journal of the Egyptian Mathematical Society, 20:1–6, 2012, DOI: 10.1016/j.joems.2011.12.005.
  • [2] Bilinski, S. Eine Verallgemeinerung der Formeln von Frenet und eine Isomorphie gewisser Teile der Differentialgeometrie der Raumkurven. Glasnik Math.-Fiz. i Astr., 10:175–180. 1955
  • [3] Bilinski, S. Über eine Erweiterungsmöglichkeit der Kurventheorie. Monatshefte fr Mathe- matik, 67:289–302, 1963, eudml.org/doc/177219.
  • [4] Bishop, R. L. There is more than one way to frame a curve. Amer. Math. Monthly, 82:246– 251, 1975, www.jstor.org/stable/2319846.
  • [5] Camci, C., Kula, L., and Altinok, M. On spherical slant helices in euclidean 3-space. arXiv:1308.5532 [math.DG], 2013.
  • [6] Hoppe, R. U¨ ber die Darstellung der Curven durch Krmmung und Torsion. Journal fr die reine und angewandte Mathematik, 60:182–187, 1862, http://eudml.org/doc/147848.
  • [7] Hoschek, J. Eine Verallgemeinerung der B¨oschungsfl¨achen. Mathematische Annalen, 179:275– 284, 1969, http://eudml.org/doc/161782.
  • [8] Izumiya, S. and Takeuchi, N. New Special Curves and Developable Surfaces. Turk J Math, 28:153–163, 2004, journals.tubitak.gov.tr/math/issues/mat-04-28-2/mat-28-2-6-0301-4.pdf.
  • [9] Kühnel, W. Differential Geometry: Curves - Surfaces - Manifolds, Second Edition. American Mathematical Society, 2006.
  • [10] Kula, L., Ekmekci, N., Yaylı, Y., and İlarslan, K. Characterizations of slant helices in Eu- clidean 3-space. Turk. J. Math., 34(2):261–274, 2010, DOI: 10.3906/mat-0809-17.
  • [11] Kula, L. and Yayli, Y. On slant helix and its spherical indicatrix. Appl. Math. Comput., 169(1):600–607, 2010, DOI: 10.1016/j.amc.2004.09.078.
  • [12] Menninger, A. Frenet Curves and Successor Curves. arXiv:1302.3175 [math.DG], 2013.
  • [13] Monterde, J. Salkowski curves revisted: A family of curves with constant curvature and non-constant torsion. Computer Aided Geometric Design, 26:271278, 2009, DOI: 10.1016/j.cagd.2008.10.002
  • [14] Nomizu, K. On Frenet equations for curves of class C∞. Tˆohoku Math. J., 11:106–112, 1959, projecteuclid.org/euclid.tmj/1178244631.
  • [15] Salkowski, E. Zur Transformation von Raumkurven. Mathematische Annalen 66: 517–557, 1909, eudml.org/doc/158392.
  • [16] Scofield, P. D. Curves of Constant Precession. Amer. Math. Monthly, 102:531–537, 1995, www.jstor.org/stable/2974768.
  • [17] Wintner, A. On Frenet’s Equations. Amer. J. Math., 78:349–355, 1956, www.jstor.org/stable/2372520.
  • [18] Wong, Y.-C. and Lai, H.-F. A Critical Examination of the Theory of Curves in Three Dimensional Differential Geometry. Tˆohoku Math. J., 19:1–31, 1967, projecteu- clid.org/euclid.tmj/1178243344.

CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX

Year 2014, , 84 - 91, 30.10.2014
https://doi.org/10.36890/iejg.593986

Abstract


References

  • [1] Ali, A. T. Position vectors of slant helices in Euclidean 3-space. Journal of the Egyptian Mathematical Society, 20:1–6, 2012, DOI: 10.1016/j.joems.2011.12.005.
  • [2] Bilinski, S. Eine Verallgemeinerung der Formeln von Frenet und eine Isomorphie gewisser Teile der Differentialgeometrie der Raumkurven. Glasnik Math.-Fiz. i Astr., 10:175–180. 1955
  • [3] Bilinski, S. Über eine Erweiterungsmöglichkeit der Kurventheorie. Monatshefte fr Mathe- matik, 67:289–302, 1963, eudml.org/doc/177219.
  • [4] Bishop, R. L. There is more than one way to frame a curve. Amer. Math. Monthly, 82:246– 251, 1975, www.jstor.org/stable/2319846.
  • [5] Camci, C., Kula, L., and Altinok, M. On spherical slant helices in euclidean 3-space. arXiv:1308.5532 [math.DG], 2013.
  • [6] Hoppe, R. U¨ ber die Darstellung der Curven durch Krmmung und Torsion. Journal fr die reine und angewandte Mathematik, 60:182–187, 1862, http://eudml.org/doc/147848.
  • [7] Hoschek, J. Eine Verallgemeinerung der B¨oschungsfl¨achen. Mathematische Annalen, 179:275– 284, 1969, http://eudml.org/doc/161782.
  • [8] Izumiya, S. and Takeuchi, N. New Special Curves and Developable Surfaces. Turk J Math, 28:153–163, 2004, journals.tubitak.gov.tr/math/issues/mat-04-28-2/mat-28-2-6-0301-4.pdf.
  • [9] Kühnel, W. Differential Geometry: Curves - Surfaces - Manifolds, Second Edition. American Mathematical Society, 2006.
  • [10] Kula, L., Ekmekci, N., Yaylı, Y., and İlarslan, K. Characterizations of slant helices in Eu- clidean 3-space. Turk. J. Math., 34(2):261–274, 2010, DOI: 10.3906/mat-0809-17.
  • [11] Kula, L. and Yayli, Y. On slant helix and its spherical indicatrix. Appl. Math. Comput., 169(1):600–607, 2010, DOI: 10.1016/j.amc.2004.09.078.
  • [12] Menninger, A. Frenet Curves and Successor Curves. arXiv:1302.3175 [math.DG], 2013.
  • [13] Monterde, J. Salkowski curves revisted: A family of curves with constant curvature and non-constant torsion. Computer Aided Geometric Design, 26:271278, 2009, DOI: 10.1016/j.cagd.2008.10.002
  • [14] Nomizu, K. On Frenet equations for curves of class C∞. Tˆohoku Math. J., 11:106–112, 1959, projecteuclid.org/euclid.tmj/1178244631.
  • [15] Salkowski, E. Zur Transformation von Raumkurven. Mathematische Annalen 66: 517–557, 1909, eudml.org/doc/158392.
  • [16] Scofield, P. D. Curves of Constant Precession. Amer. Math. Monthly, 102:531–537, 1995, www.jstor.org/stable/2974768.
  • [17] Wintner, A. On Frenet’s Equations. Amer. J. Math., 78:349–355, 1956, www.jstor.org/stable/2372520.
  • [18] Wong, Y.-C. and Lai, H.-F. A Critical Examination of the Theory of Curves in Three Dimensional Differential Geometry. Tˆohoku Math. J., 19:1–31, 1967, projecteu- clid.org/euclid.tmj/1178243344.
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Anton Mennınger

Publication Date October 30, 2014
Published in Issue Year 2014

Cite

APA Mennınger, A. (2014). CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX. International Electronic Journal of Geometry, 7(2), 84-91. https://doi.org/10.36890/iejg.593986
AMA Mennınger A. CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX. Int. Electron. J. Geom. October 2014;7(2):84-91. doi:10.36890/iejg.593986
Chicago Mennınger, Anton. “CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX”. International Electronic Journal of Geometry 7, no. 2 (October 2014): 84-91. https://doi.org/10.36890/iejg.593986.
EndNote Mennınger A (October 1, 2014) CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX. International Electronic Journal of Geometry 7 2 84–91.
IEEE A. Mennınger, “CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX”, Int. Electron. J. Geom., vol. 7, no. 2, pp. 84–91, 2014, doi: 10.36890/iejg.593986.
ISNAD Mennınger, Anton. “CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX”. International Electronic Journal of Geometry 7/2 (October 2014), 84-91. https://doi.org/10.36890/iejg.593986.
JAMA Mennınger A. CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX. Int. Electron. J. Geom. 2014;7:84–91.
MLA Mennınger, Anton. “CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX”. International Electronic Journal of Geometry, vol. 7, no. 2, 2014, pp. 84-91, doi:10.36890/iejg.593986.
Vancouver Mennınger A. CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX. Int. Electron. J. Geom. 2014;7(2):84-91.

Cited By






Persistent rigid-body motions on slant helices
International Journal of Geometric Methods in Modern Physics
https://doi.org/10.1142/S0219887819501937



Spinor Equations of Successor Curves
Universal Journal of Mathematics and Applications
https://doi.org/10.32323/ujma.1070029


Slant helices and isothermic surfaces
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
https://doi.org/10.1007/s13366-017-0352-8




Associated curves from a different point of view in $E^3$
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.1026359