[1] Ali, A. T. Position vectors of slant helices in Euclidean 3-space. Journal of the Egyptian
Mathematical Society, 20:1–6, 2012, DOI: 10.1016/j.joems.2011.12.005.
[2] Bilinski, S. Eine Verallgemeinerung der Formeln von Frenet und eine Isomorphie gewisser Teile
der Differentialgeometrie der Raumkurven. Glasnik Math.-Fiz. i Astr., 10:175–180. 1955
[3] Bilinski, S. Über eine Erweiterungsmöglichkeit der Kurventheorie. Monatshefte fr Mathe-
matik, 67:289–302, 1963, eudml.org/doc/177219.
[4] Bishop, R. L. There is more than one way to frame a curve. Amer. Math. Monthly, 82:246– 251,
1975, www.jstor.org/stable/2319846.
[5] Camci, C., Kula, L., and Altinok, M. On spherical slant helices in euclidean 3-space.
arXiv:1308.5532 [math.DG], 2013.
[6] Hoppe, R. U¨ ber die Darstellung der Curven durch Krmmung und Torsion. Journal fr die
reine und angewandte Mathematik, 60:182–187, 1862, http://eudml.org/doc/147848.
[7] Hoschek, J. Eine Verallgemeinerung der B¨oschungsfl¨achen. Mathematische Annalen, 179:275– 284,
1969, http://eudml.org/doc/161782.
[8] Izumiya, S. and Takeuchi, N. New Special Curves and Developable Surfaces. Turk J Math,
28:153–163, 2004, journals.tubitak.gov.tr/math/issues/mat-04-28-2/mat-28-2-6-0301-4.pdf.
[9] Kühnel, W. Differential Geometry: Curves - Surfaces - Manifolds, Second Edition. American
Mathematical Society, 2006.
[10] Kula, L., Ekmekci, N., Yaylı, Y., and İlarslan, K. Characterizations of slant helices in Eu-
clidean 3-space. Turk. J. Math., 34(2):261–274, 2010, DOI: 10.3906/mat-0809-17.
[11] Kula, L. and Yayli, Y. On slant helix and its spherical indicatrix. Appl. Math. Comput.,
169(1):600–607, 2010, DOI: 10.1016/j.amc.2004.09.078.
[12] Menninger, A. Frenet Curves and Successor Curves. arXiv:1302.3175 [math.DG], 2013.
[13] Monterde, J. Salkowski curves revisted: A family of curves with constant curvature
and non-constant torsion. Computer Aided Geometric Design, 26:271278, 2009, DOI:
10.1016/j.cagd.2008.10.002
[14] Nomizu, K. On Frenet equations for curves of class C∞. Tˆohoku Math. J., 11:106–112, 1959,
projecteuclid.org/euclid.tmj/1178244631.
[15] Salkowski, E. Zur Transformation von Raumkurven. Mathematische Annalen 66: 517–557, 1909,
eudml.org/doc/158392.
[16] Scofield, P. D. Curves of Constant Precession. Amer. Math. Monthly, 102:531–537, 1995,
www.jstor.org/stable/2974768.
[17] Wintner, A. On Frenet’s Equations. Amer. J. Math., 78:349–355, 1956,
www.jstor.org/stable/2372520.
[18] Wong, Y.-C. and Lai, H.-F. A Critical Examination of the Theory of Curves
in Three Dimensional Differential Geometry. Tˆohoku Math. J., 19:1–31, 1967, projecteu-
clid.org/euclid.tmj/1178243344.
CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX
[1] Ali, A. T. Position vectors of slant helices in Euclidean 3-space. Journal of the Egyptian
Mathematical Society, 20:1–6, 2012, DOI: 10.1016/j.joems.2011.12.005.
[2] Bilinski, S. Eine Verallgemeinerung der Formeln von Frenet und eine Isomorphie gewisser Teile
der Differentialgeometrie der Raumkurven. Glasnik Math.-Fiz. i Astr., 10:175–180. 1955
[3] Bilinski, S. Über eine Erweiterungsmöglichkeit der Kurventheorie. Monatshefte fr Mathe-
matik, 67:289–302, 1963, eudml.org/doc/177219.
[4] Bishop, R. L. There is more than one way to frame a curve. Amer. Math. Monthly, 82:246– 251,
1975, www.jstor.org/stable/2319846.
[5] Camci, C., Kula, L., and Altinok, M. On spherical slant helices in euclidean 3-space.
arXiv:1308.5532 [math.DG], 2013.
[6] Hoppe, R. U¨ ber die Darstellung der Curven durch Krmmung und Torsion. Journal fr die
reine und angewandte Mathematik, 60:182–187, 1862, http://eudml.org/doc/147848.
[7] Hoschek, J. Eine Verallgemeinerung der B¨oschungsfl¨achen. Mathematische Annalen, 179:275– 284,
1969, http://eudml.org/doc/161782.
[8] Izumiya, S. and Takeuchi, N. New Special Curves and Developable Surfaces. Turk J Math,
28:153–163, 2004, journals.tubitak.gov.tr/math/issues/mat-04-28-2/mat-28-2-6-0301-4.pdf.
[9] Kühnel, W. Differential Geometry: Curves - Surfaces - Manifolds, Second Edition. American
Mathematical Society, 2006.
[10] Kula, L., Ekmekci, N., Yaylı, Y., and İlarslan, K. Characterizations of slant helices in Eu-
clidean 3-space. Turk. J. Math., 34(2):261–274, 2010, DOI: 10.3906/mat-0809-17.
[11] Kula, L. and Yayli, Y. On slant helix and its spherical indicatrix. Appl. Math. Comput.,
169(1):600–607, 2010, DOI: 10.1016/j.amc.2004.09.078.
[12] Menninger, A. Frenet Curves and Successor Curves. arXiv:1302.3175 [math.DG], 2013.
[13] Monterde, J. Salkowski curves revisted: A family of curves with constant curvature
and non-constant torsion. Computer Aided Geometric Design, 26:271278, 2009, DOI:
10.1016/j.cagd.2008.10.002
[14] Nomizu, K. On Frenet equations for curves of class C∞. Tˆohoku Math. J., 11:106–112, 1959,
projecteuclid.org/euclid.tmj/1178244631.
[15] Salkowski, E. Zur Transformation von Raumkurven. Mathematische Annalen 66: 517–557, 1909,
eudml.org/doc/158392.
[16] Scofield, P. D. Curves of Constant Precession. Amer. Math. Monthly, 102:531–537, 1995,
www.jstor.org/stable/2974768.
[17] Wintner, A. On Frenet’s Equations. Amer. J. Math., 78:349–355, 1956,
www.jstor.org/stable/2372520.
[18] Wong, Y.-C. and Lai, H.-F. A Critical Examination of the Theory of Curves
in Three Dimensional Differential Geometry. Tˆohoku Math. J., 19:1–31, 1967, projecteu-
clid.org/euclid.tmj/1178243344.
Mennınger, A. (2014). CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX. International Electronic Journal of Geometry, 7(2), 84-91. https://doi.org/10.36890/iejg.593986
AMA
Mennınger A. CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX. Int. Electron. J. Geom. October 2014;7(2):84-91. doi:10.36890/iejg.593986
Chicago
Mennınger, Anton. “CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX”. International Electronic Journal of Geometry 7, no. 2 (October 2014): 84-91. https://doi.org/10.36890/iejg.593986.
EndNote
Mennınger A (October 1, 2014) CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX. International Electronic Journal of Geometry 7 2 84–91.
IEEE
A. Mennınger, “CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX”, Int. Electron. J. Geom., vol. 7, no. 2, pp. 84–91, 2014, doi: 10.36890/iejg.593986.
ISNAD
Mennınger, Anton. “CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX”. International Electronic Journal of Geometry 7/2 (October 2014), 84-91. https://doi.org/10.36890/iejg.593986.
JAMA
Mennınger A. CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX. Int. Electron. J. Geom. 2014;7:84–91.
MLA
Mennınger, Anton. “CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX”. International Electronic Journal of Geometry, vol. 7, no. 2, 2014, pp. 84-91, doi:10.36890/iejg.593986.
Vancouver
Mennınger A. CHARACTERIZATION OF THE SLANT HELIX AS SUCCESSOR CURVE OF THE GENERAL HELIX. Int. Electron. J. Geom. 2014;7(2):84-91.