Research Article
BibTex RIS Cite

SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4

Year 2014, , 36 - 43, 30.04.2014
https://doi.org/10.36890/iejg.594494

Abstract


References

  • [1] Arslan, K. and Murathan, C., Tensor Product Surfaces of Pseudo-Euclidean Planar Curves, Geometry and Topology of Submanifolds, VII, World Scientific, (1994), 71-75.
  • [2] Chen,B.Y., Geometry of Submanifolds, Dekker, New York, 1973.
  • [3] Chen, B.Y., Differential Geometry of Semiring of Immersions, I:General Theory, Bull. Inst. Math. Acad. Sinica, 21(1993),1-34.
  • [4] Decruyenaere, F., Dillen, F., Mihai, I., Verstraelen, L., Tensor Products of Spherical and Equivariant Immersions, Bull. Belg. Math. Soc. - Simon Stevin, 1(1994), 643-648.
  • [5] Decruyenaere, F., Dillen, F., Verstraelen, L., Vrancken, L., The Semiring of Immersions of Manifolds, Beitrage Algebra Geom. 34(1993), 209-215.
  • [6] Deprez, J., Semi-parallel Surfaces in Euclidean Space, J. Geom., 25(1985), 192-200.,
  • [7] Deszcz, R., On Pseudosymmetric Spaces, Bull. Soc. Math. Belg., 44 ser. A, (1992), 1-34.
  • [8] Ferus, D., Symmetric Submanifolds of Euclidean Space, Math. Ann., 247(1980), 81-93.
  • [9] Guadalupe, I.V., Rodriguez, L., Normal Curvature of Surfaces in Space Forms, Pacific J. Math., 106(1983), 95-103.
  • [10] Lumiste, U., Classification of Two-codimensional Semi-symmetric Submanifolds. TRU Toime- tised, 803(1988), 79-84.
  • [11] Mihai, I. and Rouxel, B., Tensor product surfaces of Euclidean plane curves, Results in Mathematics, 27 (1995), no. 3-4, 308-315.
  • [12] Mihai, I. and Rouxel, B., Tensor product surfaces of Euclidean Plane Curves, Geometry and Topology of Submanifolds, VII, World Scientific, (1994), 189-192.
  • [13] Mihai, I., Rosca, R., Verstraelen, L., Vrancken, L., Tensor Product Surfaces of Euclidean Planar Curves, Rend. Sem. Mat. Messina, 3(1994/1995), 173-184.
  • [14] Mihai, I., Van de Woestyne, I., Verstraelen, L. and Walrave, J., Tensor Product Surfaces of Lorentzian Planar Curves, Bull. Inst. Math. Acad. Sinica, 23(1995), no.4, 357-363.
  • [15] Ozgur, C., Arslan, K., Murathan, C., On a Class of Surfaces in Euclidean Spaces, Commun. Fac. Sci. Univ. Ank. series A1, 51(2002), 47-54.
  • [16] Szabo, Z.I., Structure Theorems on Riemannian Spaces Satisfying R(X,Y)·R=0. I. The local version, J. Differential Geometry, 17(1982), 531-582.
Year 2014, , 36 - 43, 30.04.2014
https://doi.org/10.36890/iejg.594494

Abstract

References

  • [1] Arslan, K. and Murathan, C., Tensor Product Surfaces of Pseudo-Euclidean Planar Curves, Geometry and Topology of Submanifolds, VII, World Scientific, (1994), 71-75.
  • [2] Chen,B.Y., Geometry of Submanifolds, Dekker, New York, 1973.
  • [3] Chen, B.Y., Differential Geometry of Semiring of Immersions, I:General Theory, Bull. Inst. Math. Acad. Sinica, 21(1993),1-34.
  • [4] Decruyenaere, F., Dillen, F., Mihai, I., Verstraelen, L., Tensor Products of Spherical and Equivariant Immersions, Bull. Belg. Math. Soc. - Simon Stevin, 1(1994), 643-648.
  • [5] Decruyenaere, F., Dillen, F., Verstraelen, L., Vrancken, L., The Semiring of Immersions of Manifolds, Beitrage Algebra Geom. 34(1993), 209-215.
  • [6] Deprez, J., Semi-parallel Surfaces in Euclidean Space, J. Geom., 25(1985), 192-200.,
  • [7] Deszcz, R., On Pseudosymmetric Spaces, Bull. Soc. Math. Belg., 44 ser. A, (1992), 1-34.
  • [8] Ferus, D., Symmetric Submanifolds of Euclidean Space, Math. Ann., 247(1980), 81-93.
  • [9] Guadalupe, I.V., Rodriguez, L., Normal Curvature of Surfaces in Space Forms, Pacific J. Math., 106(1983), 95-103.
  • [10] Lumiste, U., Classification of Two-codimensional Semi-symmetric Submanifolds. TRU Toime- tised, 803(1988), 79-84.
  • [11] Mihai, I. and Rouxel, B., Tensor product surfaces of Euclidean plane curves, Results in Mathematics, 27 (1995), no. 3-4, 308-315.
  • [12] Mihai, I. and Rouxel, B., Tensor product surfaces of Euclidean Plane Curves, Geometry and Topology of Submanifolds, VII, World Scientific, (1994), 189-192.
  • [13] Mihai, I., Rosca, R., Verstraelen, L., Vrancken, L., Tensor Product Surfaces of Euclidean Planar Curves, Rend. Sem. Mat. Messina, 3(1994/1995), 173-184.
  • [14] Mihai, I., Van de Woestyne, I., Verstraelen, L. and Walrave, J., Tensor Product Surfaces of Lorentzian Planar Curves, Bull. Inst. Math. Acad. Sinica, 23(1995), no.4, 357-363.
  • [15] Ozgur, C., Arslan, K., Murathan, C., On a Class of Surfaces in Euclidean Spaces, Commun. Fac. Sci. Univ. Ank. series A1, 51(2002), 47-54.
  • [16] Szabo, Z.I., Structure Theorems on Riemannian Spaces Satisfying R(X,Y)·R=0. I. The local version, J. Differential Geometry, 17(1982), 531-582.
There are 16 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Betül Bulca

Kadri Arslan

Publication Date April 30, 2014
Published in Issue Year 2014

Cite

APA Bulca, B., & Arslan, K. (2014). SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4. International Electronic Journal of Geometry, 7(1), 36-43. https://doi.org/10.36890/iejg.594494
AMA Bulca B, Arslan K. SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4. Int. Electron. J. Geom. April 2014;7(1):36-43. doi:10.36890/iejg.594494
Chicago Bulca, Betül, and Kadri Arslan. “SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4”. International Electronic Journal of Geometry 7, no. 1 (April 2014): 36-43. https://doi.org/10.36890/iejg.594494.
EndNote Bulca B, Arslan K (April 1, 2014) SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4. International Electronic Journal of Geometry 7 1 36–43.
IEEE B. Bulca and K. Arslan, “SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4”, Int. Electron. J. Geom., vol. 7, no. 1, pp. 36–43, 2014, doi: 10.36890/iejg.594494.
ISNAD Bulca, Betül - Arslan, Kadri. “SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4”. International Electronic Journal of Geometry 7/1 (April 2014), 36-43. https://doi.org/10.36890/iejg.594494.
JAMA Bulca B, Arslan K. SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4. Int. Electron. J. Geom. 2014;7:36–43.
MLA Bulca, Betül and Kadri Arslan. “SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4”. International Electronic Journal of Geometry, vol. 7, no. 1, 2014, pp. 36-43, doi:10.36890/iejg.594494.
Vancouver Bulca B, Arslan K. SEMIPARALLEL TENSOR PRODUCT SURFACES IN E^4. Int. Electron. J. Geom. 2014;7(1):36-43.