Research Article
BibTex RIS Cite
Year 2020, , 1 - 8, 30.01.2020
https://doi.org/10.36890/iejg.690479

Abstract

References

  • [1] Beldjilali, G.: Induced Structures on Golden Riemannian Manifolds. Beitr Algebra Geom. 59 (4), 761-777 (2018).
  • [2] Beldjilali, G.: s-Golden manifolds, Mediterr. J. Math. (2019). https://doi.org/10.1007/s00009-019-1343-9.
  • [3] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, Vol. 203, Birhauser, Boston, (2002).
  • [4] Boyer, C.P., Galicki, K., Matzeu, P.: On Eta-Einstein Sasakian Geometry. Comm.Math. Phys. 262, 177-208 (2006).
  • [5] Crasmareanu, M., Hretecanu C.E.: Golden differential geometry. Chaos, Solitons & Fractals. 38, 1124-1146 (2008).
  • [6] Etayo, F., Santamaria R., Upadhyay, A.: On the Geometry of Almost Golden Riemannian Manifolds, Mediterr. J. Math. 14,14-187 (2017). doi 10.1007/s00009-017-0991-x.
  • [7] Gezer, A., Cengiz N., Salimov, A.: On integrability of Golden Riemannian structures. Turkish J.Math. 37, 693-703 (2013).
  • [8] Gezer, A., Karaman, C.: Golden-Hessian Structures. Proc. Nat. Acad. Sci. 86, 41-46 (2016).
  • [9] Hretcanu, C. E.: Submanifolds in Riemannian manifold with Golden structure. In: Workshop on Finsler Geometry and its Applications, Hungary (2007).
  • [10] Ozkan, M., Yilmaz, F.: Prolongation of Golden structures to tangent bundles of order r. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. Volume 65 (1), 35-47 (2016).
  • [11] Sahin, B., Akyol, M. A.: Golden maps between Golden Riemannian manifolds and constancy of certain maps. Math. Commun. 19, 333-342 (2014).
  • [12] Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Math., Vol 3, World Sci., (1984).

A New Class of Golden Riemannian Manifold

Year 2020, , 1 - 8, 30.01.2020
https://doi.org/10.36890/iejg.690479

Abstract

In this paper, we introduce a new class of almost Golden Riemannian structures and study their essential examples as well as their fundamental properties. Next, we investigate a particular type belonging to this class and we establish some basic results for Riemannian curvature tensor and the sectional curvature. Concrete examples are given.



References

  • [1] Beldjilali, G.: Induced Structures on Golden Riemannian Manifolds. Beitr Algebra Geom. 59 (4), 761-777 (2018).
  • [2] Beldjilali, G.: s-Golden manifolds, Mediterr. J. Math. (2019). https://doi.org/10.1007/s00009-019-1343-9.
  • [3] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, Vol. 203, Birhauser, Boston, (2002).
  • [4] Boyer, C.P., Galicki, K., Matzeu, P.: On Eta-Einstein Sasakian Geometry. Comm.Math. Phys. 262, 177-208 (2006).
  • [5] Crasmareanu, M., Hretecanu C.E.: Golden differential geometry. Chaos, Solitons & Fractals. 38, 1124-1146 (2008).
  • [6] Etayo, F., Santamaria R., Upadhyay, A.: On the Geometry of Almost Golden Riemannian Manifolds, Mediterr. J. Math. 14,14-187 (2017). doi 10.1007/s00009-017-0991-x.
  • [7] Gezer, A., Cengiz N., Salimov, A.: On integrability of Golden Riemannian structures. Turkish J.Math. 37, 693-703 (2013).
  • [8] Gezer, A., Karaman, C.: Golden-Hessian Structures. Proc. Nat. Acad. Sci. 86, 41-46 (2016).
  • [9] Hretcanu, C. E.: Submanifolds in Riemannian manifold with Golden structure. In: Workshop on Finsler Geometry and its Applications, Hungary (2007).
  • [10] Ozkan, M., Yilmaz, F.: Prolongation of Golden structures to tangent bundles of order r. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. Volume 65 (1), 35-47 (2016).
  • [11] Sahin, B., Akyol, M. A.: Golden maps between Golden Riemannian manifolds and constancy of certain maps. Math. Commun. 19, 333-342 (2014).
  • [12] Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Math., Vol 3, World Sci., (1984).
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Gherici Beldjilali This is me

Publication Date January 30, 2020
Published in Issue Year 2020

Cite

APA Beldjilali, G. (2020). A New Class of Golden Riemannian Manifold. International Electronic Journal of Geometry, 13(1), 1-8. https://doi.org/10.36890/iejg.690479
AMA Beldjilali G. A New Class of Golden Riemannian Manifold. Int. Electron. J. Geom. January 2020;13(1):1-8. doi:10.36890/iejg.690479
Chicago Beldjilali, Gherici. “A New Class of Golden Riemannian Manifold”. International Electronic Journal of Geometry 13, no. 1 (January 2020): 1-8. https://doi.org/10.36890/iejg.690479.
EndNote Beldjilali G (January 1, 2020) A New Class of Golden Riemannian Manifold. International Electronic Journal of Geometry 13 1 1–8.
IEEE G. Beldjilali, “A New Class of Golden Riemannian Manifold”, Int. Electron. J. Geom., vol. 13, no. 1, pp. 1–8, 2020, doi: 10.36890/iejg.690479.
ISNAD Beldjilali, Gherici. “A New Class of Golden Riemannian Manifold”. International Electronic Journal of Geometry 13/1 (January 2020), 1-8. https://doi.org/10.36890/iejg.690479.
JAMA Beldjilali G. A New Class of Golden Riemannian Manifold. Int. Electron. J. Geom. 2020;13:1–8.
MLA Beldjilali, Gherici. “A New Class of Golden Riemannian Manifold”. International Electronic Journal of Geometry, vol. 13, no. 1, 2020, pp. 1-8, doi:10.36890/iejg.690479.
Vancouver Beldjilali G. A New Class of Golden Riemannian Manifold. Int. Electron. J. Geom. 2020;13(1):1-8.