Research Article
BibTex RIS Cite
Year 2021, , 239 - 246, 29.10.2021
https://doi.org/10.36890/iejg.890585

Abstract

References

  • [1] Alliez P., Cohen-Steiner D., Devillers O., Lévy B., Desbrum M. Anisotropic polygonal pemeshing. In: Proceeding of ACM SIGGRAPH.485-493 (2003).
  • [2] Bayram E., Güler F., Kasap E.: Parametric representation of a surface pencil with a common asymptotic curve. Computer Aided Design. 44, 637-643 (2012).
  • [3] Bayram E.: Surface pencil with a common adjoint curve. Turkish Journal of Mathematics. 44, 1649-1659 (2020).
  • [4] Bayram E., Ergün E., Kasap E.: Surface family with a common natural asymptotic lift. Journal of Science and Arts. 2, 117-124 (2015).
  • [5] Do Carmo M. P.: Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, New Jersey (1976).
  • [6] Güler F., Bayram E., Kasap E.: Offset surface pencil with a common asymptotic curve. International Journal of Geometric Methods in Modern Physics. 15 (11), 1850195 (2018).
  • [7] Lee C. L., Lee J. W., Yoon D.W.: Interpolation of surfaces with geodesic. Journal of the Korean Mathematical Society. 57 (4), 957-971 (2020).
  • [8] Li C. Y., Wang R. H., Zhu C. G.: Parametric representation of a surface pencil with a common line of curvature. Computer Aided Design. 43, 1110-1117 (2011).
  • [9] Maekawa T., Wolter F. E., Patrikalakis N. M.: Umbilics and lines of curvature for shape interrogation. Computer Aided Geometric Design. 13 (2), 133-161 (1996).
  • [10] O’Neill B.: Elementary differential geometry. Elsevier Inc., (1966).
  • [11] Patrikalakis N. M., Maekawa T.: Shape interrogation for computer aided design and manufacturing. Springer-Verlag, Heidelberg (2002).
  • [12] Wang G.J., Tang K., Tai C.L.: Parametric representation of a surface pencil with a common spatial geodesic. Computer Aided Design. 36, 447-459 (2004).
  • [13] Willmore T. J.: An introduction to differential geometry. Dover Publications (2012).

Interpolation of Surfaces with Line of Curvature

Year 2021, , 239 - 246, 29.10.2021
https://doi.org/10.36890/iejg.890585

Abstract

We introduce a method to construct parametric surfaces interpolating given finite points and a curve as a line of curvature in 3-dimensional Euclidean space. We present an existence theorem of a $C^{0}$-Hermite interpolation of surfaces possessing the given data. We show that every parameter curve of a constructed surface is a circular helix if the given curve is a circular helix. The method is validated with illustrative examples.

References

  • [1] Alliez P., Cohen-Steiner D., Devillers O., Lévy B., Desbrum M. Anisotropic polygonal pemeshing. In: Proceeding of ACM SIGGRAPH.485-493 (2003).
  • [2] Bayram E., Güler F., Kasap E.: Parametric representation of a surface pencil with a common asymptotic curve. Computer Aided Design. 44, 637-643 (2012).
  • [3] Bayram E.: Surface pencil with a common adjoint curve. Turkish Journal of Mathematics. 44, 1649-1659 (2020).
  • [4] Bayram E., Ergün E., Kasap E.: Surface family with a common natural asymptotic lift. Journal of Science and Arts. 2, 117-124 (2015).
  • [5] Do Carmo M. P.: Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, New Jersey (1976).
  • [6] Güler F., Bayram E., Kasap E.: Offset surface pencil with a common asymptotic curve. International Journal of Geometric Methods in Modern Physics. 15 (11), 1850195 (2018).
  • [7] Lee C. L., Lee J. W., Yoon D.W.: Interpolation of surfaces with geodesic. Journal of the Korean Mathematical Society. 57 (4), 957-971 (2020).
  • [8] Li C. Y., Wang R. H., Zhu C. G.: Parametric representation of a surface pencil with a common line of curvature. Computer Aided Design. 43, 1110-1117 (2011).
  • [9] Maekawa T., Wolter F. E., Patrikalakis N. M.: Umbilics and lines of curvature for shape interrogation. Computer Aided Geometric Design. 13 (2), 133-161 (1996).
  • [10] O’Neill B.: Elementary differential geometry. Elsevier Inc., (1966).
  • [11] Patrikalakis N. M., Maekawa T.: Shape interrogation for computer aided design and manufacturing. Springer-Verlag, Heidelberg (2002).
  • [12] Wang G.J., Tang K., Tai C.L.: Parametric representation of a surface pencil with a common spatial geodesic. Computer Aided Design. 36, 447-459 (2004).
  • [13] Willmore T. J.: An introduction to differential geometry. Dover Publications (2012).
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Ergin Bayram 0000-0003-2633-0991

Publication Date October 29, 2021
Acceptance Date September 14, 2021
Published in Issue Year 2021

Cite

APA Bayram, E. (2021). Interpolation of Surfaces with Line of Curvature. International Electronic Journal of Geometry, 14(2), 239-246. https://doi.org/10.36890/iejg.890585
AMA Bayram E. Interpolation of Surfaces with Line of Curvature. Int. Electron. J. Geom. October 2021;14(2):239-246. doi:10.36890/iejg.890585
Chicago Bayram, Ergin. “Interpolation of Surfaces With Line of Curvature”. International Electronic Journal of Geometry 14, no. 2 (October 2021): 239-46. https://doi.org/10.36890/iejg.890585.
EndNote Bayram E (October 1, 2021) Interpolation of Surfaces with Line of Curvature. International Electronic Journal of Geometry 14 2 239–246.
IEEE E. Bayram, “Interpolation of Surfaces with Line of Curvature”, Int. Electron. J. Geom., vol. 14, no. 2, pp. 239–246, 2021, doi: 10.36890/iejg.890585.
ISNAD Bayram, Ergin. “Interpolation of Surfaces With Line of Curvature”. International Electronic Journal of Geometry 14/2 (October 2021), 239-246. https://doi.org/10.36890/iejg.890585.
JAMA Bayram E. Interpolation of Surfaces with Line of Curvature. Int. Electron. J. Geom. 2021;14:239–246.
MLA Bayram, Ergin. “Interpolation of Surfaces With Line of Curvature”. International Electronic Journal of Geometry, vol. 14, no. 2, 2021, pp. 239-46, doi:10.36890/iejg.890585.
Vancouver Bayram E. Interpolation of Surfaces with Line of Curvature. Int. Electron. J. Geom. 2021;14(2):239-46.