[1] Aghasi, M., Bahari, A.R., Dodson, C.T.J., Galanis, G.N. and Suri, A., Second order structures for sprays and connections on Fréchet
manifolds. http://arxiv.org/abs/0810.5261v1.
[2] Aghasi,Mand Suri, A., Splitting theorems for the double tangent bundles of Fréchet manifolds. Balkan J. Geom. Appl. 15 (2010), no. 2, 1-13.
[3] Antonelli, P.L., Ingarden, R.S. and Matsumoto, M.S., The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology.
Kluwer, Dordrecht, 1993.
[4] Ashtekar, A., and Isham, C.J., Representations of the holonomy algebras of gravity and non-Abelian gauge theories. Classical Quantum
Gravity, 9 (1992), 1433-1467.
[5] Ashtekar, A. and Lewandowski, J., Differential geometry on the space of connections via graphs and projective limits. J. Geom. Phys., 17
(1995), 191-230.
[6] Bourbaki, N., Varietés differentielles et analytiques. Fascisule de résultats 1-7, Herman, Paris, 1967.
[7] Dodson, C.T.J. and Galanis, G.N., Bundles of acceleration on Banach manifolds. World Congress of Nonlinear Analysis, June 30 July 7,
Orlando, 2004.
[8] Dodson, C.T.J., Galanis, G.N., Vassiliou, E., A generalized second order frame bundle for Fréchet manifolds. J. Geom. Phys. 55, (2005), no.
3, 291-305.
[9] Eliasson, H.I., Geometry of manifolds of maps. J. Diff. Geom. 1 (1967), pp. 169-194.
[10] Galanis, G.N., Differential and Geometric Structure for the Tangent Bundle of a Projective Limit Manifold. Rendiconti del Seminario
Matematico di Padova. 112 (2004), 1-12.
[12] Hamilton, R.S., The inverse functions theorem of Nash and Moser. Bull. Amer. Math. Soc., 7 (1982), 65-222.
[13] Klingenberg, W., Riemannian geometry. de Gruyter, Berlin, 1982.
[14] Lang, S., Fundumentals of differential geometry. Graduate Texts in Mathematics, vol. 191, Springer-Verlag, New York, 1999.
[15] Mangiarotti, L., Sardanashvily, G., Connections in classical and quantum field theory. World Scientific, 2000.
[16] Kriegl, A. and Michor, P., The convenient setting of global analysis. Mathematical Surveys and Monographs, 53 American Mathematical
Society, 1997.
[17] Nag, S., The complex analytic theory of the Teichmulller spaces. J. Wiley, New York, 1988.
[18] Nag, S. and Sullivan, D., Teichmulller theory and the universal period mapping via quantum calculus and the H1=2 space on the circle.
Osaka J. Math. 32 (1995), 1-34.
[19] Muller, O., A metric approach to Fréchet geometry. J. Geom. Phys. 58 (2008), no. 11, 1477-1500.
[20] Omori, H., Infinite-dimensional Lie groups. Translations of Mathematical Monographs. 158. Berlin: American Mathematical Society, 1997.
[21] Saunders, D.J., The geometry of jet bundles. Cambridge Univ. Press, Cambridge, 1989.
[22] Suri, A. and Aghasi, M., Connections and second order differential equations on infinite dimensional manifolds Int. Elect. J. Geom. 6 (2013),
no. 2, 45-56.
[23] Suri, A., Higher order frame bundles. Balkan J. Geom. Appl. 21 (2016), no. 2, 102-117.
[24] Suri, A. and Rastegarzadeh, S., Complete Lift of Vector fields and Sprays to T1M. Int. J. Geom. Methods Mod. Phys. 12 (2015), 1550113.
[25] Vassiliou, E., Transformations of linear connections. Period. Math. Hungar. 13 (1982), no. 4, 289-308.
[26] Vilms, J., Connections on tangent bundles. J. Diff. Geom. 1 (1967), 235-243.
Year 2018,
Volume: 11 Issue: 1, 1 - 16, 30.04.2018
[1] Aghasi, M., Bahari, A.R., Dodson, C.T.J., Galanis, G.N. and Suri, A., Second order structures for sprays and connections on Fréchet
manifolds. http://arxiv.org/abs/0810.5261v1.
[2] Aghasi,Mand Suri, A., Splitting theorems for the double tangent bundles of Fréchet manifolds. Balkan J. Geom. Appl. 15 (2010), no. 2, 1-13.
[3] Antonelli, P.L., Ingarden, R.S. and Matsumoto, M.S., The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology.
Kluwer, Dordrecht, 1993.
[4] Ashtekar, A., and Isham, C.J., Representations of the holonomy algebras of gravity and non-Abelian gauge theories. Classical Quantum
Gravity, 9 (1992), 1433-1467.
[5] Ashtekar, A. and Lewandowski, J., Differential geometry on the space of connections via graphs and projective limits. J. Geom. Phys., 17
(1995), 191-230.
[6] Bourbaki, N., Varietés differentielles et analytiques. Fascisule de résultats 1-7, Herman, Paris, 1967.
[7] Dodson, C.T.J. and Galanis, G.N., Bundles of acceleration on Banach manifolds. World Congress of Nonlinear Analysis, June 30 July 7,
Orlando, 2004.
[8] Dodson, C.T.J., Galanis, G.N., Vassiliou, E., A generalized second order frame bundle for Fréchet manifolds. J. Geom. Phys. 55, (2005), no.
3, 291-305.
[9] Eliasson, H.I., Geometry of manifolds of maps. J. Diff. Geom. 1 (1967), pp. 169-194.
[10] Galanis, G.N., Differential and Geometric Structure for the Tangent Bundle of a Projective Limit Manifold. Rendiconti del Seminario
Matematico di Padova. 112 (2004), 1-12.
[12] Hamilton, R.S., The inverse functions theorem of Nash and Moser. Bull. Amer. Math. Soc., 7 (1982), 65-222.
[13] Klingenberg, W., Riemannian geometry. de Gruyter, Berlin, 1982.
[14] Lang, S., Fundumentals of differential geometry. Graduate Texts in Mathematics, vol. 191, Springer-Verlag, New York, 1999.
[15] Mangiarotti, L., Sardanashvily, G., Connections in classical and quantum field theory. World Scientific, 2000.
[16] Kriegl, A. and Michor, P., The convenient setting of global analysis. Mathematical Surveys and Monographs, 53 American Mathematical
Society, 1997.
[17] Nag, S., The complex analytic theory of the Teichmulller spaces. J. Wiley, New York, 1988.
[18] Nag, S. and Sullivan, D., Teichmulller theory and the universal period mapping via quantum calculus and the H1=2 space on the circle.
Osaka J. Math. 32 (1995), 1-34.
[19] Muller, O., A metric approach to Fréchet geometry. J. Geom. Phys. 58 (2008), no. 11, 1477-1500.
[20] Omori, H., Infinite-dimensional Lie groups. Translations of Mathematical Monographs. 158. Berlin: American Mathematical Society, 1997.
[21] Saunders, D.J., The geometry of jet bundles. Cambridge Univ. Press, Cambridge, 1989.
[22] Suri, A. and Aghasi, M., Connections and second order differential equations on infinite dimensional manifolds Int. Elect. J. Geom. 6 (2013),
no. 2, 45-56.
[23] Suri, A., Higher order frame bundles. Balkan J. Geom. Appl. 21 (2016), no. 2, 102-117.
[24] Suri, A. and Rastegarzadeh, S., Complete Lift of Vector fields and Sprays to T1M. Int. J. Geom. Methods Mod. Phys. 12 (2015), 1550113.
[25] Vassiliou, E., Transformations of linear connections. Period. Math. Hungar. 13 (1982), no. 4, 289-308.
[26] Vilms, J., Connections on tangent bundles. J. Diff. Geom. 1 (1967), 235-243.
Suri, A., & Moosaei, M. (2018). Bundle of Frames and Sprays for Fréchet Manifolds. International Electronic Journal of Geometry, 11(1), 1-16. https://doi.org/10.36890/iejg.545066
AMA
Suri A, Moosaei M. Bundle of Frames and Sprays for Fréchet Manifolds. Int. Electron. J. Geom. April 2018;11(1):1-16. doi:10.36890/iejg.545066
Chicago
Suri, Ali, and Mohammad Moosaei. “Bundle of Frames and Sprays for Fréchet Manifolds”. International Electronic Journal of Geometry 11, no. 1 (April 2018): 1-16. https://doi.org/10.36890/iejg.545066.
EndNote
Suri A, Moosaei M (April 1, 2018) Bundle of Frames and Sprays for Fréchet Manifolds. International Electronic Journal of Geometry 11 1 1–16.
IEEE
A. Suri and M. Moosaei, “Bundle of Frames and Sprays for Fréchet Manifolds”, Int. Electron. J. Geom., vol. 11, no. 1, pp. 1–16, 2018, doi: 10.36890/iejg.545066.
ISNAD
Suri, Ali - Moosaei, Mohammad. “Bundle of Frames and Sprays for Fréchet Manifolds”. International Electronic Journal of Geometry 11/1 (April 2018), 1-16. https://doi.org/10.36890/iejg.545066.
JAMA
Suri A, Moosaei M. Bundle of Frames and Sprays for Fréchet Manifolds. Int. Electron. J. Geom. 2018;11:1–16.
MLA
Suri, Ali and Mohammad Moosaei. “Bundle of Frames and Sprays for Fréchet Manifolds”. International Electronic Journal of Geometry, vol. 11, no. 1, 2018, pp. 1-16, doi:10.36890/iejg.545066.
Vancouver
Suri A, Moosaei M. Bundle of Frames and Sprays for Fréchet Manifolds. Int. Electron. J. Geom. 2018;11(1):1-16.