[1] Alcázar, J. G., Hermosoa, C. and Muntingh, G., Detecting similarity of rational plane curves, Journal of Computational and Applied
Mathematics, 269 (2014), 1–13.
[2] Ali, A. T. and Lopez, R., Slant Helices in Minkowski Space E31, J. Korean Math. Soc. 48 (2011), 159-167.
[3] Babaarslan, M. and Yaylı, Y., Time-Like Constant Slope Surfaces and Space-Like Bertrand Curves in Minkowski 3-Space, Proc. Natl. Acad.
Sci., India, Sect. A Phys. Sci., 84 (2014), 535–540.
[4] Barnsley, M. F., Hutchinson, J. E. and Stenflo, Ö., V-variable fractals: Fractals with partial self similarity, Advances in Mathematics, 218
(2008), 2051-2088.
[5] Berger, M., Geometry I. Springer, New York, 1998.
[6] Brook, A., Bruckstein, A. M. and Kimmel, R., On Similarity-Invariant Fairness Measures, LNCS, 3459 (2005), 456–467.
[7] Encheva, R. and Georgiev, G., Shapes of space curves, J. Geom. Graph., 7 (2003), 145-155.
[8] Encheva, R. and Georgiev, G., Similar Frenet curves, Results in Mathematics, 55 (2009), 359–372.
[9] Hutchinson, J. E., Fractals and Self-Similarity, Indiana University Mathematics Journal, 30 (1981), N:5.
[10] K. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, Second Edition, John Wiley & Sons, Ltd., 2003.
[11] Inoguchi, J., Biharmonic curves in Minkowski 3-space, International Journal of Mathematics and Mathematical Sciences, 21 (2003), 1365-1368.
[12] Izumiya, S., Pei, D., Sano, T. and Torii E., Evolutes of Hyperbolic Plane Curves, Acta Mathematica Sinica, English Series, 20 (2004), 543–550.
[13] Izumiya, S. and Takeuchi, N., Generic properties of helices and Bertrand curves, J. Geom., 74 (2002), 97-109.
[14] Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turkish J. Math., 28 (2004), 153-163.
[15] Li, S. Z., Invariant Representation, Matching and Pose Estimation of 3D Space Curves Under Similarity Transformation, Pattern
Recognition, 30 (1997), 447-458.
[16] Li, S. Z., Similarity Invariants for 3D Space Curve Matching, In Proceedings of the First Asian Conference on Computer Vision, Japan (1993),
454-457.
[17] López, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, International Electronic Journal of Geometry, 7 (2014),
44-107.
[18] Mandelbrot, B. B., The Fractal Geometry of Nature, New York: W. H. Freeman, 1983.
[19] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press Inc., London, 1983.
[20] Özdemir, M., Ergin, A. A., Rotations with unit timelike quaternions in Minkowski 3-space, Journal of Geometry and Physics, 56 (2006),
322–336.
[21] Özdemir, M., Ergin, A. A., Spacelike Darboux Curves in Minkowski 3-Space, Differ. Geom. Dyn. Syst., 9 (2007), 131-137.
[1] Alcázar, J. G., Hermosoa, C. and Muntingh, G., Detecting similarity of rational plane curves, Journal of Computational and Applied
Mathematics, 269 (2014), 1–13.
[2] Ali, A. T. and Lopez, R., Slant Helices in Minkowski Space E31, J. Korean Math. Soc. 48 (2011), 159-167.
[3] Babaarslan, M. and Yaylı, Y., Time-Like Constant Slope Surfaces and Space-Like Bertrand Curves in Minkowski 3-Space, Proc. Natl. Acad.
Sci., India, Sect. A Phys. Sci., 84 (2014), 535–540.
[4] Barnsley, M. F., Hutchinson, J. E. and Stenflo, Ö., V-variable fractals: Fractals with partial self similarity, Advances in Mathematics, 218
(2008), 2051-2088.
[5] Berger, M., Geometry I. Springer, New York, 1998.
[6] Brook, A., Bruckstein, A. M. and Kimmel, R., On Similarity-Invariant Fairness Measures, LNCS, 3459 (2005), 456–467.
[7] Encheva, R. and Georgiev, G., Shapes of space curves, J. Geom. Graph., 7 (2003), 145-155.
[8] Encheva, R. and Georgiev, G., Similar Frenet curves, Results in Mathematics, 55 (2009), 359–372.
[9] Hutchinson, J. E., Fractals and Self-Similarity, Indiana University Mathematics Journal, 30 (1981), N:5.
[10] K. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, Second Edition, John Wiley & Sons, Ltd., 2003.
[11] Inoguchi, J., Biharmonic curves in Minkowski 3-space, International Journal of Mathematics and Mathematical Sciences, 21 (2003), 1365-1368.
[12] Izumiya, S., Pei, D., Sano, T. and Torii E., Evolutes of Hyperbolic Plane Curves, Acta Mathematica Sinica, English Series, 20 (2004), 543–550.
[13] Izumiya, S. and Takeuchi, N., Generic properties of helices and Bertrand curves, J. Geom., 74 (2002), 97-109.
[14] Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turkish J. Math., 28 (2004), 153-163.
[15] Li, S. Z., Invariant Representation, Matching and Pose Estimation of 3D Space Curves Under Similarity Transformation, Pattern
Recognition, 30 (1997), 447-458.
[16] Li, S. Z., Similarity Invariants for 3D Space Curve Matching, In Proceedings of the First Asian Conference on Computer Vision, Japan (1993),
454-457.
[17] López, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, International Electronic Journal of Geometry, 7 (2014),
44-107.
[18] Mandelbrot, B. B., The Fractal Geometry of Nature, New York: W. H. Freeman, 1983.
[19] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press Inc., London, 1983.
[20] Özdemir, M., Ergin, A. A., Rotations with unit timelike quaternions in Minkowski 3-space, Journal of Geometry and Physics, 56 (2006),
322–336.
[21] Özdemir, M., Ergin, A. A., Spacelike Darboux Curves in Minkowski 3-Space, Differ. Geom. Dyn. Syst., 9 (2007), 131-137.
Şimşek, H., & Özdemir, M. (2018). Some Results on p-Shape Curvatures of Non-Lightlike Space Curves. International Electronic Journal of Geometry, 11(2), 61-70. https://doi.org/10.36890/iejg.545132
AMA
Şimşek H, Özdemir M. Some Results on p-Shape Curvatures of Non-Lightlike Space Curves. Int. Electron. J. Geom. November 2018;11(2):61-70. doi:10.36890/iejg.545132
Chicago
Şimşek, Hakan, and Mustafa Özdemir. “Some Results on P-Shape Curvatures of Non-Lightlike Space Curves”. International Electronic Journal of Geometry 11, no. 2 (November 2018): 61-70. https://doi.org/10.36890/iejg.545132.
EndNote
Şimşek H, Özdemir M (November 1, 2018) Some Results on p-Shape Curvatures of Non-Lightlike Space Curves. International Electronic Journal of Geometry 11 2 61–70.
IEEE
H. Şimşek and M. Özdemir, “Some Results on p-Shape Curvatures of Non-Lightlike Space Curves”, Int. Electron. J. Geom., vol. 11, no. 2, pp. 61–70, 2018, doi: 10.36890/iejg.545132.
ISNAD
Şimşek, Hakan - Özdemir, Mustafa. “Some Results on P-Shape Curvatures of Non-Lightlike Space Curves”. International Electronic Journal of Geometry 11/2 (November 2018), 61-70. https://doi.org/10.36890/iejg.545132.
JAMA
Şimşek H, Özdemir M. Some Results on p-Shape Curvatures of Non-Lightlike Space Curves. Int. Electron. J. Geom. 2018;11:61–70.
MLA
Şimşek, Hakan and Mustafa Özdemir. “Some Results on P-Shape Curvatures of Non-Lightlike Space Curves”. International Electronic Journal of Geometry, vol. 11, no. 2, 2018, pp. 61-70, doi:10.36890/iejg.545132.
Vancouver
Şimşek H, Özdemir M. Some Results on p-Shape Curvatures of Non-Lightlike Space Curves. Int. Electron. J. Geom. 2018;11(2):61-70.