[5] Christiansen, P. L., Eilbeck, J. C., Enolskii, V. Z. and Kostov, N. A., Quasi-periodic and
periodic solutions for coupled nonlinear Schrdinger equations of Manakov type, Proc. R.
Soc., A 456(2000) 2263-2281.
[6] Conte, R., Musette, M. and Verhoeven, C., Completeness of the cubic and quartic Henon-
Heiles hamiltonians, Theor. Math. Phys., 144(2005) 888-898.
[7] Eilbeck, J.C., Enolskii, V.Z., Kuznetsov, V.B. and Leykin, D.V., Linear r-matrix algebra for
systems separable in parabolic coordinates, Phys. Lett., 180A(1993) 208-214.
[8] Grammaticos, B. Dorozzi, B., Ramani, A., Integrability of hamiltonians with third and fourth-
degree polynomial potentials, J. Math. Phys., 24(1983) 2289-2295.
[9] Griffiths, P.A. and Harris, J., Principles of algebraic geometry, Wiley-Interscience 1978.
[10] Haine, L., Geodesic flow on SO(4) and Abelian surfaces. Math. Ann., 263(1983) 435-472.
[11] Hietarinta, J., Classical versus quantum integrability. J. Math. Phys., 25(1984) 1833-1840.
[12] Hietarinta, J., Direct methods for the search of the second invariant. Phys. Rep., 147(1987)
87-154.
[13] Kasperczuk, S., Integrability of the Yang-Mills hamiltonian system, Celes. Mech. and Dyn.
Astr., 58(1994), 387-391. Erratum Celes. Mech. and Dyn. Astr., 60(1994), 289.
[14] Kostov, N.A., Quasi-periodical solutions of the integrable dynamical systems related to Hill's
equation. Lett. Math. Phys., 17(1989) 95-104.
[15] Lesfari, A., Abelian surfaces and Kowalewski's top, Ann. Scient. Ecole Norm. Sup. Paris,
21(1988), sr. 4, 193-223.
[16] Lesfari., A., Completely integrable systems : Jacobi's heritage, J. Geom. Phys., 31(1999)
265-286.
[17] Lesfari, A., Le systeme differentiel de Henon-Heiles et les varietes Prym, Pacific J. Math.,
212(2003), N1, 125-132.
[18] Lesfari, A., Le theoreme d'Arnold-Liouville et ses consequences, Elem. Math., 58 (2003) 6-20.
[19] Lesfari, A., Analyse des singularites de quelques systµemes integrables, C.R. Acad. Sci. Paris,
341(2005), Ser. I, 85-88.
[20] Lesfari, A., Abelian varieties, surfaces of general type and integrable systems, Beitrage Alge-
bra Geom., 1(2007), Vol.48, 95-114.
[21] Lesfari, A., The Yang-Mills system and cyclic covering of abelian varieties, to appear Int. J.
Geom. Methods Mod. Phys., Vol. 5(2008), N8.
[22] Moishezon., B.G., On n-dimensional compact varieties with n algebraically independent mero-
morphic functions, Amer. Math. Soc. Transl., 63(1967), 51-177.
[23] Perelomov, A.M., Integrable system of classical mechanics and Lie algebras, Birkhauser 1994.
[24] Piovan, L., Cyclic coverings of abelian varieties and the Goryachev-Chaplygin top, Math.
Ann., 294(1992), 755-764.
[25] Ravoson, V., Ramani, A. and Grammaticos, B., Generalized separability for a hamiltonian
with nonseparable quartic potential, Phys. Lett., 191A(1994), 91-95.
[26] Tondo, G., On the integrability of stationary and restricted °ows of the KdV hierarchy, J.
Phys. A : Mat. Gen., 28(1995), 5097-5115.
[27] Vanhaecke, P., Stratifications of hyperelliptic jacobians and the Sato Grassmannian, Acta
Appl. Math., 40(1995), 143-172.
[28] Vanhaecke, P., Integrable systems and symmetric products of curves, Math. Z., 227(1998),
93-127.
[29] Verhoeven, C., Musette, M. and Conte, R., General solution of hamiltonians withs extend
cubic and quartic potentials, Theor. Math. Phys., 134(2003), 128-138.
[30] Wojciechowski, S., Integrability of one particle in a perturbed central quartic potential, Physica Scripta, 31(1985), 433-438.
Affine parts of Abelian surfaces as complete intersection of three quartics
Year 2008,
Volume: 1 Issue: 2, 15 - 32, 30.11.2008
[5] Christiansen, P. L., Eilbeck, J. C., Enolskii, V. Z. and Kostov, N. A., Quasi-periodic and
periodic solutions for coupled nonlinear Schrdinger equations of Manakov type, Proc. R.
Soc., A 456(2000) 2263-2281.
[6] Conte, R., Musette, M. and Verhoeven, C., Completeness of the cubic and quartic Henon-
Heiles hamiltonians, Theor. Math. Phys., 144(2005) 888-898.
[7] Eilbeck, J.C., Enolskii, V.Z., Kuznetsov, V.B. and Leykin, D.V., Linear r-matrix algebra for
systems separable in parabolic coordinates, Phys. Lett., 180A(1993) 208-214.
[8] Grammaticos, B. Dorozzi, B., Ramani, A., Integrability of hamiltonians with third and fourth-
degree polynomial potentials, J. Math. Phys., 24(1983) 2289-2295.
[9] Griffiths, P.A. and Harris, J., Principles of algebraic geometry, Wiley-Interscience 1978.
[10] Haine, L., Geodesic flow on SO(4) and Abelian surfaces. Math. Ann., 263(1983) 435-472.
[11] Hietarinta, J., Classical versus quantum integrability. J. Math. Phys., 25(1984) 1833-1840.
[12] Hietarinta, J., Direct methods for the search of the second invariant. Phys. Rep., 147(1987)
87-154.
[13] Kasperczuk, S., Integrability of the Yang-Mills hamiltonian system, Celes. Mech. and Dyn.
Astr., 58(1994), 387-391. Erratum Celes. Mech. and Dyn. Astr., 60(1994), 289.
[14] Kostov, N.A., Quasi-periodical solutions of the integrable dynamical systems related to Hill's
equation. Lett. Math. Phys., 17(1989) 95-104.
[15] Lesfari, A., Abelian surfaces and Kowalewski's top, Ann. Scient. Ecole Norm. Sup. Paris,
21(1988), sr. 4, 193-223.
[16] Lesfari., A., Completely integrable systems : Jacobi's heritage, J. Geom. Phys., 31(1999)
265-286.
[17] Lesfari, A., Le systeme differentiel de Henon-Heiles et les varietes Prym, Pacific J. Math.,
212(2003), N1, 125-132.
[18] Lesfari, A., Le theoreme d'Arnold-Liouville et ses consequences, Elem. Math., 58 (2003) 6-20.
[19] Lesfari, A., Analyse des singularites de quelques systµemes integrables, C.R. Acad. Sci. Paris,
341(2005), Ser. I, 85-88.
[20] Lesfari, A., Abelian varieties, surfaces of general type and integrable systems, Beitrage Alge-
bra Geom., 1(2007), Vol.48, 95-114.
[21] Lesfari, A., The Yang-Mills system and cyclic covering of abelian varieties, to appear Int. J.
Geom. Methods Mod. Phys., Vol. 5(2008), N8.
[22] Moishezon., B.G., On n-dimensional compact varieties with n algebraically independent mero-
morphic functions, Amer. Math. Soc. Transl., 63(1967), 51-177.
[23] Perelomov, A.M., Integrable system of classical mechanics and Lie algebras, Birkhauser 1994.
[24] Piovan, L., Cyclic coverings of abelian varieties and the Goryachev-Chaplygin top, Math.
Ann., 294(1992), 755-764.
[25] Ravoson, V., Ramani, A. and Grammaticos, B., Generalized separability for a hamiltonian
with nonseparable quartic potential, Phys. Lett., 191A(1994), 91-95.
[26] Tondo, G., On the integrability of stationary and restricted °ows of the KdV hierarchy, J.
Phys. A : Mat. Gen., 28(1995), 5097-5115.
[27] Vanhaecke, P., Stratifications of hyperelliptic jacobians and the Sato Grassmannian, Acta
Appl. Math., 40(1995), 143-172.
[28] Vanhaecke, P., Integrable systems and symmetric products of curves, Math. Z., 227(1998),
93-127.
[29] Verhoeven, C., Musette, M. and Conte, R., General solution of hamiltonians withs extend
cubic and quartic potentials, Theor. Math. Phys., 134(2003), 128-138.
[30] Wojciechowski, S., Integrability of one particle in a perturbed central quartic potential, Physica Scripta, 31(1985), 433-438.
Lesfari, A. (2008). Affine parts of Abelian surfaces as complete intersection of three quartics. International Electronic Journal of Geometry, 1(2), 15-32.
AMA
Lesfari A. Affine parts of Abelian surfaces as complete intersection of three quartics. Int. Electron. J. Geom. November 2008;1(2):15-32.
Chicago
Lesfari, Ahmed. “Affine Parts of Abelian Surfaces As Complete Intersection of Three Quartics”. International Electronic Journal of Geometry 1, no. 2 (November 2008): 15-32.
EndNote
Lesfari A (November 1, 2008) Affine parts of Abelian surfaces as complete intersection of three quartics. International Electronic Journal of Geometry 1 2 15–32.
IEEE
A. Lesfari, “Affine parts of Abelian surfaces as complete intersection of three quartics”, Int. Electron. J. Geom., vol. 1, no. 2, pp. 15–32, 2008.
ISNAD
Lesfari, Ahmed. “Affine Parts of Abelian Surfaces As Complete Intersection of Three Quartics”. International Electronic Journal of Geometry 1/2 (November 2008), 15-32.
JAMA
Lesfari A. Affine parts of Abelian surfaces as complete intersection of three quartics. Int. Electron. J. Geom. 2008;1:15–32.
MLA
Lesfari, Ahmed. “Affine Parts of Abelian Surfaces As Complete Intersection of Three Quartics”. International Electronic Journal of Geometry, vol. 1, no. 2, 2008, pp. 15-32.
Vancouver
Lesfari A. Affine parts of Abelian surfaces as complete intersection of three quartics. Int. Electron. J. Geom. 2008;1(2):15-32.