[1] Cayley A., A Sixth memoir upon quantics. Phil. Trans. Roy. Soc. London. 149 (1859).
[2] Efimov N. V., Higher Geometry. MAIK. Nauka/Interperiodika. FIZMATLIT, Moscow, 2004. (In
Russian)
[3] Klein F., Vergleichende Betrachtungen über neuere geometrische Forschungen, Programm zum
Eintritt in die philosophische Facultat und den Senat der Universitat zu Erlangen. A. Deichert,
Erlangen, 1872.
[4] Klein F., Vorlesungen Über Nicht-Euclidische Geometrie. Verlag von Julius Springer, Berlin,
1928. [5] Laguerre, Sur la theorie des foyers. Nouv. Ann. de Mathem. 12 (1853), 57-66.
[6] Richter-Gebert Jürgen, Perspectives on Projective Geometry: A Guided Tour Through Real and
Complex. Springer Science + Business Media, New York, 2011.
[7] Romakina L. N., Analogs of a formula of Lobachevsky for angle of parallelism on the hyperbolic
plane of positive curvature. Sib. Elektron.Mat. Izv. 10 (2013), 393-407. (In Russian)
[8] Romakina L. N., Classification of tetrahedrons with not hyperbolic sides in a hyperbolic space
of positive curvature. Chebyshevskii Sb. 16 (2015), no. 2, 208-221. (In Russian)
[9] Romakina L. N., Geometries of the co-Euclidean and co-pseudoeuclidean planes. Saratov,
Publishing house Scientific book, 2008. (In Russian)
[10] Romakina L. N., Geometry of the hyperbolic plane of positive curvature. P. 1: Trigonometry.
Saratov, Publishing House of the Saratov University, 2013. (In Russian)
[11] Romakina L. N., Geometry of the hyperbolic plane of positive curvature. P. 2: Transformations
and simple partitions. Saratov, Publishing House of the Saratov University, 2013. (In Russian)
[12] Romakina L. N., The Area of a Generalized Polygon without Parabolic Edges of a Hyperbolic
Plane of Positive Curvature. Asian Journal of Mathematics and Computer Research 10 (2016), no. 4,
293-310.
[13] Rosenfeld B. A., Geometry Of Lie Groups. Springer Science + Business Media, New York, 2015.
[14] Rosenfeld B. A., Non-Euclidean spaces. Nauka, Moscow, 1969. (In Russian)
[15] Rosenfeld B. A., Zamahovsky M. P. Geometry of groups of Lie. Symmetric, parabolic and
periodic spaces. Moscow, MCCME, 2003. (In Russian)
[16] Young J. W., Projective Geometry. The Open Court Publishing Company, Chicago, Illinois, 1930.
Year 2016,
Volume: 9 Issue: 2, 50 - 58, 30.10.2016
[1] Cayley A., A Sixth memoir upon quantics. Phil. Trans. Roy. Soc. London. 149 (1859).
[2] Efimov N. V., Higher Geometry. MAIK. Nauka/Interperiodika. FIZMATLIT, Moscow, 2004. (In
Russian)
[3] Klein F., Vergleichende Betrachtungen über neuere geometrische Forschungen, Programm zum
Eintritt in die philosophische Facultat und den Senat der Universitat zu Erlangen. A. Deichert,
Erlangen, 1872.
[4] Klein F., Vorlesungen Über Nicht-Euclidische Geometrie. Verlag von Julius Springer, Berlin,
1928. [5] Laguerre, Sur la theorie des foyers. Nouv. Ann. de Mathem. 12 (1853), 57-66.
[6] Richter-Gebert Jürgen, Perspectives on Projective Geometry: A Guided Tour Through Real and
Complex. Springer Science + Business Media, New York, 2011.
[7] Romakina L. N., Analogs of a formula of Lobachevsky for angle of parallelism on the hyperbolic
plane of positive curvature. Sib. Elektron.Mat. Izv. 10 (2013), 393-407. (In Russian)
[8] Romakina L. N., Classification of tetrahedrons with not hyperbolic sides in a hyperbolic space
of positive curvature. Chebyshevskii Sb. 16 (2015), no. 2, 208-221. (In Russian)
[9] Romakina L. N., Geometries of the co-Euclidean and co-pseudoeuclidean planes. Saratov,
Publishing house Scientific book, 2008. (In Russian)
[10] Romakina L. N., Geometry of the hyperbolic plane of positive curvature. P. 1: Trigonometry.
Saratov, Publishing House of the Saratov University, 2013. (In Russian)
[11] Romakina L. N., Geometry of the hyperbolic plane of positive curvature. P. 2: Transformations
and simple partitions. Saratov, Publishing House of the Saratov University, 2013. (In Russian)
[12] Romakina L. N., The Area of a Generalized Polygon without Parabolic Edges of a Hyperbolic
Plane of Positive Curvature. Asian Journal of Mathematics and Computer Research 10 (2016), no. 4,
293-310.
[13] Rosenfeld B. A., Geometry Of Lie Groups. Springer Science + Business Media, New York, 2015.
[14] Rosenfeld B. A., Non-Euclidean spaces. Nauka, Moscow, 1969. (In Russian)
[15] Rosenfeld B. A., Zamahovsky M. P. Geometry of groups of Lie. Symmetric, parabolic and
periodic spaces. Moscow, MCCME, 2003. (In Russian)
[16] Young J. W., Projective Geometry. The Open Court Publishing Company, Chicago, Illinois, 1930.
Romakina, L. N. (2016). Dihedrons of a Hyperbolic Three-Space of Positive Curvature. International Electronic Journal of Geometry, 9(2), 50-58. https://doi.org/10.36890/iejg.584585
AMA
Romakina LN. Dihedrons of a Hyperbolic Three-Space of Positive Curvature. Int. Electron. J. Geom. October 2016;9(2):50-58. doi:10.36890/iejg.584585
Chicago
Romakina, Lyudmila N. “Dihedrons of a Hyperbolic Three-Space of Positive Curvature”. International Electronic Journal of Geometry 9, no. 2 (October 2016): 50-58. https://doi.org/10.36890/iejg.584585.
EndNote
Romakina LN (October 1, 2016) Dihedrons of a Hyperbolic Three-Space of Positive Curvature. International Electronic Journal of Geometry 9 2 50–58.
IEEE
L. N. Romakina, “Dihedrons of a Hyperbolic Three-Space of Positive Curvature”, Int. Electron. J. Geom., vol. 9, no. 2, pp. 50–58, 2016, doi: 10.36890/iejg.584585.
ISNAD
Romakina, Lyudmila N. “Dihedrons of a Hyperbolic Three-Space of Positive Curvature”. International Electronic Journal of Geometry 9/2 (October 2016), 50-58. https://doi.org/10.36890/iejg.584585.
JAMA
Romakina LN. Dihedrons of a Hyperbolic Three-Space of Positive Curvature. Int. Electron. J. Geom. 2016;9:50–58.
MLA
Romakina, Lyudmila N. “Dihedrons of a Hyperbolic Three-Space of Positive Curvature”. International Electronic Journal of Geometry, vol. 9, no. 2, 2016, pp. 50-58, doi:10.36890/iejg.584585.
Vancouver
Romakina LN. Dihedrons of a Hyperbolic Three-Space of Positive Curvature. Int. Electron. J. Geom. 2016;9(2):50-8.