[1] Aripov, R.G., Khadziev, D., The Complete System of Global Differential and Integral Invariants
of a Curve in Euclidean Geometry, 51
(2007),no.7, 1-14.
[2] Gardner, R.B., Wilkens, G.R., The Fundamental Theorems of Curves and Hypersurfaces in
Centro-affine Geometry, Bull.Belg.Math.Soc., 4 (1997), 379-401.
[4] Guggenheimer, H.W., Differential Geometry, McGraw-Hill, New York, 1963.
[5] Hann C.E., Hickman, M.S., Projective Curvature and Integral Invariants, Acta Applicandae
Mathematicae, 74 (2002), 177-193.
[6] Izumiyma, S., Sano, T., Generic affine differential geometry of space curves, Proceedings of
the Royal Society of Edinburgh, 128A (1998), 301-314.
[7] Khadjiev, D., The Application of Invariant Theory to Differential Geometry of Curves, Fan
Publ., Tashkent, 1988.
[8] Khadjiev, D., Peks¸en, Ö., The complete system of global differential and integral invariants
for equi-affine curves, Differential Geometry and It’s Applications, 20 (2004), 167-175.
[9] Klingenberg W., A Course in Differential Geometry, Springer-Verlag, New York, 1978.
[10] Looijenga, E.J.N., Invariants of quartic plane curves as automorphic forms, Contemporary
Mathematics, 422 (2007), 107-120.
[11] Mokhtarian, F., Abbasi, S., Affine Curvature Space Scale with Affine Length Parametrization,
Pattern Analysis & Applications, 4 (2001), 1-8.
[18] Su, B., Affine Differential Geometry, Science Press, Beijing, Gordon and Breach, New York,
1983.
[19] Ünel, M., Wolovich, W.A., On the Construction of Complete Sets of Geometric Invariants for
Algebraic Curves, Advances in Applied Mathematics, 24 (2000), 65-87.
[1] Aripov, R.G., Khadziev, D., The Complete System of Global Differential and Integral Invariants
of a Curve in Euclidean Geometry, 51
(2007),no.7, 1-14.
[2] Gardner, R.B., Wilkens, G.R., The Fundamental Theorems of Curves and Hypersurfaces in
Centro-affine Geometry, Bull.Belg.Math.Soc., 4 (1997), 379-401.
[4] Guggenheimer, H.W., Differential Geometry, McGraw-Hill, New York, 1963.
[5] Hann C.E., Hickman, M.S., Projective Curvature and Integral Invariants, Acta Applicandae
Mathematicae, 74 (2002), 177-193.
[6] Izumiyma, S., Sano, T., Generic affine differential geometry of space curves, Proceedings of
the Royal Society of Edinburgh, 128A (1998), 301-314.
[7] Khadjiev, D., The Application of Invariant Theory to Differential Geometry of Curves, Fan
Publ., Tashkent, 1988.
[8] Khadjiev, D., Peks¸en, Ö., The complete system of global differential and integral invariants
for equi-affine curves, Differential Geometry and It’s Applications, 20 (2004), 167-175.
[9] Klingenberg W., A Course in Differential Geometry, Springer-Verlag, New York, 1978.
[10] Looijenga, E.J.N., Invariants of quartic plane curves as automorphic forms, Contemporary
Mathematics, 422 (2007), 107-120.
[11] Mokhtarian, F., Abbasi, S., Affine Curvature Space Scale with Affine Length Parametrization,
Pattern Analysis & Applications, 4 (2001), 1-8.
[18] Su, B., Affine Differential Geometry, Science Press, Beijing, Gordon and Breach, New York,
1983.
[19] Ünel, M., Wolovich, W.A., On the Construction of Complete Sets of Geometric Invariants for
Algebraic Curves, Advances in Applied Mathematics, 24 (2000), 65-87.
Sağıroğlu, Y. (2016). Centro-Equiaffine Differential Invariants of Curve Families. International Electronic Journal of Geometry, 9(1), 23-29. https://doi.org/10.36890/iejg.591882
AMA
Sağıroğlu Y. Centro-Equiaffine Differential Invariants of Curve Families. Int. Electron. J. Geom. April 2016;9(1):23-29. doi:10.36890/iejg.591882
Chicago
Sağıroğlu, Yasemin. “Centro-Equiaffine Differential Invariants of Curve Families”. International Electronic Journal of Geometry 9, no. 1 (April 2016): 23-29. https://doi.org/10.36890/iejg.591882.
EndNote
Sağıroğlu Y (April 1, 2016) Centro-Equiaffine Differential Invariants of Curve Families. International Electronic Journal of Geometry 9 1 23–29.
IEEE
Y. Sağıroğlu, “Centro-Equiaffine Differential Invariants of Curve Families”, Int. Electron. J. Geom., vol. 9, no. 1, pp. 23–29, 2016, doi: 10.36890/iejg.591882.
ISNAD
Sağıroğlu, Yasemin. “Centro-Equiaffine Differential Invariants of Curve Families”. International Electronic Journal of Geometry 9/1 (April 2016), 23-29. https://doi.org/10.36890/iejg.591882.
JAMA
Sağıroğlu Y. Centro-Equiaffine Differential Invariants of Curve Families. Int. Electron. J. Geom. 2016;9:23–29.
MLA
Sağıroğlu, Yasemin. “Centro-Equiaffine Differential Invariants of Curve Families”. International Electronic Journal of Geometry, vol. 9, no. 1, 2016, pp. 23-29, doi:10.36890/iejg.591882.
Vancouver
Sağıroğlu Y. Centro-Equiaffine Differential Invariants of Curve Families. Int. Electron. J. Geom. 2016;9(1):23-9.