[1] Balestro, V., Craizer, M., Teixeira, R.: Curvature motion in a Minkowski Plane, unpublished
work. Avaliable at: http://arxiv.org/abs/1407.5118 (2014).
[2] Craizer, M. : Iteration of involutes of constant width curves in the Minkowski plane, to
appear in Beitr. Algebra Geom. (2014).
[3] Flanders, H.: A proof of Minkowski’s inequality for convex curves, Amer. Math. Monthly 75
(1969) 581-593.
[4] Gage, M.: Evolving plane curves by curvature in relative geometries, Duke Math J. 72 (1993)
441-466.
[5] Gage, M. & Li, Y., Evolving plane curves by curvature in relative geometries II, Duke Math J.
75 (1994) 79-98.
[6] Gage, M.: An isoperimetric inequality with applications to curve shortening, Duke Math. J.
50 (1983) 1225 - 1229.
[7] Gage, M.: Curve shortening makes convex curves circular, Invent. Math 76 (1984) 357 - 364.
[8] Gage, M. & Hamilton, R.S.: The heat equation shrinking convex plane curves, J. Diff.
Geom.23 (1986) 69 - 96.
[9] Grayson, M.A. : The heat equation shrinks embedded planes curves to round points, J. Diff.
Geom. 26 (1987) 285 - 314.
[10] Martini, H., Swanepoel, K.J., Weiss, G.: The geometry of Minkowski spaces- a survey. Part I,
Expositiones Math. 19 (2001), 97 - 142.
[11] Martini, H., Swanepoel, K.J.: The geometry of Minkowski spaces- a survey. Part II, Expo-
sitiones Math. 22 (2004), 93 - 144.
[1] Balestro, V., Craizer, M., Teixeira, R.: Curvature motion in a Minkowski Plane, unpublished
work. Avaliable at: http://arxiv.org/abs/1407.5118 (2014).
[2] Craizer, M. : Iteration of involutes of constant width curves in the Minkowski plane, to
appear in Beitr. Algebra Geom. (2014).
[3] Flanders, H.: A proof of Minkowski’s inequality for convex curves, Amer. Math. Monthly 75
(1969) 581-593.
[4] Gage, M.: Evolving plane curves by curvature in relative geometries, Duke Math J. 72 (1993)
441-466.
[5] Gage, M. & Li, Y., Evolving plane curves by curvature in relative geometries II, Duke Math J.
75 (1994) 79-98.
[6] Gage, M.: An isoperimetric inequality with applications to curve shortening, Duke Math. J.
50 (1983) 1225 - 1229.
[7] Gage, M.: Curve shortening makes convex curves circular, Invent. Math 76 (1984) 357 - 364.
[8] Gage, M. & Hamilton, R.S.: The heat equation shrinking convex plane curves, J. Diff.
Geom.23 (1986) 69 - 96.
[9] Grayson, M.A. : The heat equation shrinks embedded planes curves to round points, J. Diff.
Geom. 26 (1987) 285 - 314.
[10] Martini, H., Swanepoel, K.J., Weiss, G.: The geometry of Minkowski spaces- a survey. Part I,
Expositiones Math. 19 (2001), 97 - 142.
[11] Martini, H., Swanepoel, K.J.: The geometry of Minkowski spaces- a survey. Part II, Expo-
sitiones Math. 22 (2004), 93 - 144.
Balestro, V. (2015). CURVATURE MOTION IN TIME-DEPENDENT MINKOWSKI PLANES. International Electronic Journal of Geometry, 8(2), 70-81. https://doi.org/10.36890/iejg.592288
AMA
Balestro V. CURVATURE MOTION IN TIME-DEPENDENT MINKOWSKI PLANES. Int. Electron. J. Geom. October 2015;8(2):70-81. doi:10.36890/iejg.592288
Chicago
Balestro, Vitor. “CURVATURE MOTION IN TIME-DEPENDENT MINKOWSKI PLANES”. International Electronic Journal of Geometry 8, no. 2 (October 2015): 70-81. https://doi.org/10.36890/iejg.592288.
EndNote
Balestro V (October 1, 2015) CURVATURE MOTION IN TIME-DEPENDENT MINKOWSKI PLANES. International Electronic Journal of Geometry 8 2 70–81.
IEEE
V. Balestro, “CURVATURE MOTION IN TIME-DEPENDENT MINKOWSKI PLANES”, Int. Electron. J. Geom., vol. 8, no. 2, pp. 70–81, 2015, doi: 10.36890/iejg.592288.
ISNAD
Balestro, Vitor. “CURVATURE MOTION IN TIME-DEPENDENT MINKOWSKI PLANES”. International Electronic Journal of Geometry 8/2 (October 2015), 70-81. https://doi.org/10.36890/iejg.592288.
JAMA
Balestro V. CURVATURE MOTION IN TIME-DEPENDENT MINKOWSKI PLANES. Int. Electron. J. Geom. 2015;8:70–81.
MLA
Balestro, Vitor. “CURVATURE MOTION IN TIME-DEPENDENT MINKOWSKI PLANES”. International Electronic Journal of Geometry, vol. 8, no. 2, 2015, pp. 70-81, doi:10.36890/iejg.592288.
Vancouver
Balestro V. CURVATURE MOTION IN TIME-DEPENDENT MINKOWSKI PLANES. Int. Electron. J. Geom. 2015;8(2):70-81.