Research Article
BibTex RIS Cite

ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS

Year 2015, Volume: 8 Issue: 2, 168 - 180, 30.10.2015
https://doi.org/10.36890/iejg.592304

Abstract


References

  • [1] Allard, W.K. and Jr. Almgren F.J., An introduction to regularity theory for parametric elliptic variational problems. Proc.symp.PureMath., XXIII,Amer.Math.Soc.(7) 260, March 17 1973.
  • [2] Allard, W.K. and Jr. Almgren F.J., The structure of stationary one dimensional vari- folds with positive density. Inventiones mathematicae, 34:83:97, 1976.
  • [3] Jr. Almgren F.J., Plateau’s Problem An invitation to Varifold Geometry. 1966.
  • [4] Gromov, M., Singularities, expanders and topology of maps. part 1: Homology versus volume in the spaces of cycles. preprint.
  • [5] Hass, J. and Morgan, F., Geodesic nets on the 2-sphere. Proceedings of the American Math- ematical Society, 124(12):3843,3850, December 1996.
  • [6] Heppes, A., On the partition of the 2-sphere by geodesic nets. Proceedings of the American Mathematical Society, 127(7):2163, March 17 1999.
  • [7] Markvorsen, S., Minimal webs in Riemannian manifolds. Geom.Dedicata, 133, 2008.
Year 2015, Volume: 8 Issue: 2, 168 - 180, 30.10.2015
https://doi.org/10.36890/iejg.592304

Abstract

References

  • [1] Allard, W.K. and Jr. Almgren F.J., An introduction to regularity theory for parametric elliptic variational problems. Proc.symp.PureMath., XXIII,Amer.Math.Soc.(7) 260, March 17 1973.
  • [2] Allard, W.K. and Jr. Almgren F.J., The structure of stationary one dimensional vari- folds with positive density. Inventiones mathematicae, 34:83:97, 1976.
  • [3] Jr. Almgren F.J., Plateau’s Problem An invitation to Varifold Geometry. 1966.
  • [4] Gromov, M., Singularities, expanders and topology of maps. part 1: Homology versus volume in the spaces of cycles. preprint.
  • [5] Hass, J. and Morgan, F., Geodesic nets on the 2-sphere. Proceedings of the American Math- ematical Society, 124(12):3843,3850, December 1996.
  • [6] Heppes, A., On the partition of the 2-sphere by geodesic nets. Proceedings of the American Mathematical Society, 127(7):2163, March 17 1999.
  • [7] Markvorsen, S., Minimal webs in Riemannian manifolds. Geom.Dedicata, 133, 2008.
There are 7 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Yashar Memarıan This is me

Publication Date October 30, 2015
Published in Issue Year 2015 Volume: 8 Issue: 2

Cite

APA Memarıan, Y. (2015). ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS. International Electronic Journal of Geometry, 8(2), 168-180. https://doi.org/10.36890/iejg.592304
AMA Memarıan Y. ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS. Int. Electron. J. Geom. October 2015;8(2):168-180. doi:10.36890/iejg.592304
Chicago Memarıan, Yashar. “ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS”. International Electronic Journal of Geometry 8, no. 2 (October 2015): 168-80. https://doi.org/10.36890/iejg.592304.
EndNote Memarıan Y (October 1, 2015) ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS. International Electronic Journal of Geometry 8 2 168–180.
IEEE Y. Memarıan, “ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS”, Int. Electron. J. Geom., vol. 8, no. 2, pp. 168–180, 2015, doi: 10.36890/iejg.592304.
ISNAD Memarıan, Yashar. “ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS”. International Electronic Journal of Geometry 8/2 (October 2015), 168-180. https://doi.org/10.36890/iejg.592304.
JAMA Memarıan Y. ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS. Int. Electron. J. Geom. 2015;8:168–180.
MLA Memarıan, Yashar. “ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS”. International Electronic Journal of Geometry, vol. 8, no. 2, 2015, pp. 168-80, doi:10.36890/iejg.592304.
Vancouver Memarıan Y. ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS. Int. Electron. J. Geom. 2015;8(2):168-80.