Research Article
BibTex RIS Cite

TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE

Year 2015, Volume: 8 Issue: 1, 116 - 127, 30.04.2015
https://doi.org/10.36890/iejg.592804

Abstract


References

  • [1] Arfken, G., Mathematical Methods for Physicists, 3rd Edition, Academic Press, 1985.
  • [2] Hawking, S. W. and Ellis, G. F. R., The Large Scale Structure of Space-Time, Cambridge University Press, 1973.
  • [3] Blaine Lawson, H. Jr., Complete minimal surfaces in S3, Ann. of Math. 92 (1970), 335–374.
  • [4] Lee, S., Timelike surfaces of constant mean curvature ±1 in anti-de Sitter 3-space H3(−1), Ann. Global Anal. Geom. 29 (2006), no. 4, 361–407.
  • [5] Lee, S. and Varnado, J. H., Timelike surfaces of revolution with constant mean curvature in Minkowski 3-space, Differential Geometry and Dynamical Systems 9 (2007), No. 1, 82–102.
  • [6] Lee, S. and Zarske, K., Surfaces of Revolution with Constant Mean Curvature in Hyperbolic 3-Space, Differential Geometry - Dynamical Systems 16 (2014), 203-218.
  • [7] O’Neill, B., Elementary Differential Geometry, Academic Press, 1967.
Year 2015, Volume: 8 Issue: 1, 116 - 127, 30.04.2015
https://doi.org/10.36890/iejg.592804

Abstract

References

  • [1] Arfken, G., Mathematical Methods for Physicists, 3rd Edition, Academic Press, 1985.
  • [2] Hawking, S. W. and Ellis, G. F. R., The Large Scale Structure of Space-Time, Cambridge University Press, 1973.
  • [3] Blaine Lawson, H. Jr., Complete minimal surfaces in S3, Ann. of Math. 92 (1970), 335–374.
  • [4] Lee, S., Timelike surfaces of constant mean curvature ±1 in anti-de Sitter 3-space H3(−1), Ann. Global Anal. Geom. 29 (2006), no. 4, 361–407.
  • [5] Lee, S. and Varnado, J. H., Timelike surfaces of revolution with constant mean curvature in Minkowski 3-space, Differential Geometry and Dynamical Systems 9 (2007), No. 1, 82–102.
  • [6] Lee, S. and Zarske, K., Surfaces of Revolution with Constant Mean Curvature in Hyperbolic 3-Space, Differential Geometry - Dynamical Systems 16 (2014), 203-218.
  • [7] O’Neill, B., Elementary Differential Geometry, Academic Press, 1967.
There are 7 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Sungwook Lee This is me

Jacob Martın This is me

Publication Date April 30, 2015
Published in Issue Year 2015 Volume: 8 Issue: 1

Cite

APA Lee, S., & Martın, J. (2015). TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE. International Electronic Journal of Geometry, 8(1), 116-127. https://doi.org/10.36890/iejg.592804
AMA Lee S, Martın J. TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE. Int. Electron. J. Geom. April 2015;8(1):116-127. doi:10.36890/iejg.592804
Chicago Lee, Sungwook, and Jacob Martın. “TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE”. International Electronic Journal of Geometry 8, no. 1 (April 2015): 116-27. https://doi.org/10.36890/iejg.592804.
EndNote Lee S, Martın J (April 1, 2015) TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE. International Electronic Journal of Geometry 8 1 116–127.
IEEE S. Lee and J. Martın, “TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE”, Int. Electron. J. Geom., vol. 8, no. 1, pp. 116–127, 2015, doi: 10.36890/iejg.592804.
ISNAD Lee, Sungwook - Martın, Jacob. “TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE”. International Electronic Journal of Geometry 8/1 (April 2015), 116-127. https://doi.org/10.36890/iejg.592804.
JAMA Lee S, Martın J. TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE. Int. Electron. J. Geom. 2015;8:116–127.
MLA Lee, Sungwook and Jacob Martın. “TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE”. International Electronic Journal of Geometry, vol. 8, no. 1, 2015, pp. 116-27, doi:10.36890/iejg.592804.
Vancouver Lee S, Martın J. TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE. Int. Electron. J. Geom. 2015;8(1):116-27.