[1] Aiyama, R., Lagrangian surfaces in the complex 2-space, in: Proceedings of the Fifth Inter-
national Workshop on Differential Geometry (Taegu, 2000), 25–29, Kyungpook Natl. Univ., Taegu, 2001.
[2] Aiyama, R., Totally real surfaces in the complex 2-space, in: Steps in Differential Geometry
(Debrecen, 2000), 15–22, Debrecen, 2001.
[3] Castro, I. and Chen, B.-Y., Lagrangian surfaces in complex Euclidean plane via spherical and
hyperbolic curves, Tohoku Math. J. 58 (2006) 565–579.
[4] Castro, I. and Lerma, A. M., A new construction of Lagrangians in the complex Euclidean plane
in terms of planar curves, J. Geom. Phys. 75 (2014), 162–172.
[5] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku
Math. J. 49 (1997), 277–297.
[6] Chen, B.-Y., Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math.
99 (1997), 69–108.
[7] Chen, B.-Y., Representation of flat Lagrangian H-umbilical submanifolds in complex Eu- clidean
spaces, Tohoku Math. J. 51 (1999), 13–20.
[9] Chen, B.-Y., Lagrangian surfaces of constant curvature in complex Euclidean plane, Tohoku Math
J. 56 (2004), 289–298.
[10] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex Euclidean
plane, Proc. Edinburgh Math. Soc. 48 (2005), 337–364.
[11] Chen, B.-Y., Maslovian Lagrangian surfaces of constant curvature in complex projective or
complex hyperbolic planes, Math. Nachr. 278 (2005), 1242–1281.
[12] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex complex
projective planes, J. Geom. Phys. 53 (2005), 428–460.
[13] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex hyperbolic
planes, J. Geom. Phys. 55 (2005), 399–439.
[14] Chen, B.-Y., Three additional families of Lagrangian surfaces of constant curvature in com-
plex projective plane, J. Geom. Phys. 56 (2006), 666–669.
[15] Chen, B.-Y., Construction of Lagrangian surfaces in complex Euclidean plane with Legendre
curves, Kodai Math. J. 29 (2006), 84–112.
[16] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex hyperbolic
planes, II, Soochow J. Math. 33 (2007), 127–165.
[17] Chen, B.-Y., Pseudo-Riemannian Geometry, δ-invariants and Applications, World Scientific,
Hackensack, NJ, 2011.
[18] Chen, B.-Y., Classification of spherical Lagrangian submanifolds in complex Euclidean spaces,
Int. Electron. J. Geom. 6 (2013), no. 2, 1–8.
[19] Chen, B.-Y., Dillen, F., Verstraelen, L. and Vrancken, L., Lagrangian isometric immersions of
a real-space-form Mn(c) into a complex-space-form M˜ n(4c), Math. Proc. Cambridge Phil. Soc. 124
(1998), 107–125.
[20] Chen, B.-Y. and Ogiue, K., On totally real submanifolds, Trans. Amer. Math. Soc.
193(1974), 257–266.
[21] Chen, B.-Y. and Vrancken,L., Lagrangian minimal isometric immersions of a Lorentzian real
space form into a Lorentzian complex space form, Tohoku Math. J. 54 (2002), 121–143.
[22] Joyce, D., Special Lagrangian m-folds in Cm with symmetries, Duke Math. J. 115 (2002),
1–51.
[23] Vrancken, L., Minimal Lagrangian submanifolds with constant sectional curvature in indefi-
nite complex space forms, Proc. Amer. Math. Soc. 130 (2002), 1459–1466.
[1] Aiyama, R., Lagrangian surfaces in the complex 2-space, in: Proceedings of the Fifth Inter-
national Workshop on Differential Geometry (Taegu, 2000), 25–29, Kyungpook Natl. Univ., Taegu, 2001.
[2] Aiyama, R., Totally real surfaces in the complex 2-space, in: Steps in Differential Geometry
(Debrecen, 2000), 15–22, Debrecen, 2001.
[3] Castro, I. and Chen, B.-Y., Lagrangian surfaces in complex Euclidean plane via spherical and
hyperbolic curves, Tohoku Math. J. 58 (2006) 565–579.
[4] Castro, I. and Lerma, A. M., A new construction of Lagrangians in the complex Euclidean plane
in terms of planar curves, J. Geom. Phys. 75 (2014), 162–172.
[5] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku
Math. J. 49 (1997), 277–297.
[6] Chen, B.-Y., Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math.
99 (1997), 69–108.
[7] Chen, B.-Y., Representation of flat Lagrangian H-umbilical submanifolds in complex Eu- clidean
spaces, Tohoku Math. J. 51 (1999), 13–20.
[9] Chen, B.-Y., Lagrangian surfaces of constant curvature in complex Euclidean plane, Tohoku Math
J. 56 (2004), 289–298.
[10] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex Euclidean
plane, Proc. Edinburgh Math. Soc. 48 (2005), 337–364.
[11] Chen, B.-Y., Maslovian Lagrangian surfaces of constant curvature in complex projective or
complex hyperbolic planes, Math. Nachr. 278 (2005), 1242–1281.
[12] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex complex
projective planes, J. Geom. Phys. 53 (2005), 428–460.
[13] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex hyperbolic
planes, J. Geom. Phys. 55 (2005), 399–439.
[14] Chen, B.-Y., Three additional families of Lagrangian surfaces of constant curvature in com-
plex projective plane, J. Geom. Phys. 56 (2006), 666–669.
[15] Chen, B.-Y., Construction of Lagrangian surfaces in complex Euclidean plane with Legendre
curves, Kodai Math. J. 29 (2006), 84–112.
[16] Chen, B.-Y., Classification of Lagrangian surfaces of constant curvature in complex hyperbolic
planes, II, Soochow J. Math. 33 (2007), 127–165.
[17] Chen, B.-Y., Pseudo-Riemannian Geometry, δ-invariants and Applications, World Scientific,
Hackensack, NJ, 2011.
[18] Chen, B.-Y., Classification of spherical Lagrangian submanifolds in complex Euclidean spaces,
Int. Electron. J. Geom. 6 (2013), no. 2, 1–8.
[19] Chen, B.-Y., Dillen, F., Verstraelen, L. and Vrancken, L., Lagrangian isometric immersions of
a real-space-form Mn(c) into a complex-space-form M˜ n(4c), Math. Proc. Cambridge Phil. Soc. 124
(1998), 107–125.
[20] Chen, B.-Y. and Ogiue, K., On totally real submanifolds, Trans. Amer. Math. Soc.
193(1974), 257–266.
[21] Chen, B.-Y. and Vrancken,L., Lagrangian minimal isometric immersions of a Lorentzian real
space form into a Lorentzian complex space form, Tohoku Math. J. 54 (2002), 121–143.
[22] Joyce, D., Special Lagrangian m-folds in Cm with symmetries, Duke Math. J. 115 (2002),
1–51.
[23] Vrancken, L., Minimal Lagrangian submanifolds with constant sectional curvature in indefi-
nite complex space forms, Proc. Amer. Math. Soc. 130 (2002), 1459–1466.
Chen, B.-y. (2014). A CONSTRUCTION METHOD OF LAGRANGIAN SURFACES IN COMPLEX PSEUDO-EUCLIDEAN PLANE C(1,2) AND ITS APPLICATIONS. International Electronic Journal of Geometry, 7(1), 4-25. https://doi.org/10.36890/iejg.594488
AMA
Chen By. A CONSTRUCTION METHOD OF LAGRANGIAN SURFACES IN COMPLEX PSEUDO-EUCLIDEAN PLANE C(1,2) AND ITS APPLICATIONS. Int. Electron. J. Geom. April 2014;7(1):4-25. doi:10.36890/iejg.594488
Chicago
Chen, Bang-yen. “A CONSTRUCTION METHOD OF LAGRANGIAN SURFACES IN COMPLEX PSEUDO-EUCLIDEAN PLANE C(1,2) AND ITS APPLICATIONS”. International Electronic Journal of Geometry 7, no. 1 (April 2014): 4-25. https://doi.org/10.36890/iejg.594488.
EndNote
Chen B-y (April 1, 2014) A CONSTRUCTION METHOD OF LAGRANGIAN SURFACES IN COMPLEX PSEUDO-EUCLIDEAN PLANE C(1,2) AND ITS APPLICATIONS. International Electronic Journal of Geometry 7 1 4–25.
IEEE
B.-y. Chen, “A CONSTRUCTION METHOD OF LAGRANGIAN SURFACES IN COMPLEX PSEUDO-EUCLIDEAN PLANE C(1,2) AND ITS APPLICATIONS”, Int. Electron. J. Geom., vol. 7, no. 1, pp. 4–25, 2014, doi: 10.36890/iejg.594488.
ISNAD
Chen, Bang-yen. “A CONSTRUCTION METHOD OF LAGRANGIAN SURFACES IN COMPLEX PSEUDO-EUCLIDEAN PLANE C(1,2) AND ITS APPLICATIONS”. International Electronic Journal of Geometry 7/1 (April 2014), 4-25. https://doi.org/10.36890/iejg.594488.
JAMA
Chen B-y. A CONSTRUCTION METHOD OF LAGRANGIAN SURFACES IN COMPLEX PSEUDO-EUCLIDEAN PLANE C(1,2) AND ITS APPLICATIONS. Int. Electron. J. Geom. 2014;7:4–25.
MLA
Chen, Bang-yen. “A CONSTRUCTION METHOD OF LAGRANGIAN SURFACES IN COMPLEX PSEUDO-EUCLIDEAN PLANE C(1,2) AND ITS APPLICATIONS”. International Electronic Journal of Geometry, vol. 7, no. 1, 2014, pp. 4-25, doi:10.36890/iejg.594488.
Vancouver
Chen B-y. A CONSTRUCTION METHOD OF LAGRANGIAN SURFACES IN COMPLEX PSEUDO-EUCLIDEAN PLANE C(1,2) AND ITS APPLICATIONS. Int. Electron. J. Geom. 2014;7(1):4-25.