Research Article
BibTex RIS Cite

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE

Year 2014, Volume: 7 Issue: 1, 44 - 107, 30.04.2014
https://doi.org/10.36890/iejg.594497

Abstract


References

  • [1] Abe, N., Koike, N., Yamaguchi, S., Congruence theorems for proper semi-Riemannian hyper- surfaces in a real space form, Yokohama Math. J. 35 (1987), 123–136.
  • [2] Barros, M., Caballero, M., Ortega, M., Rotational surfaces in L3 and solitons in the non-linear sigma model, Comm. Math. Phys. 290 (2009), 437–477.
  • [3] Bonnor, W. B., Null curves in a Minkowski space-time, Tensor (N. S.) 20 (1969), 229–242.
  • [4] Carmo, M. do, Differential Geometry of Curves and Surfaces, Prentice-Hall, Saddle River, 1976.
  • [5] Clelland, J. N., Totally quasi-umbilical timelike surfaces in R1,2, Asian J. Math. 16 (2012), no. 2, 189–208.
  • [6] Dillen, F., Kühnel, W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math. 98 (1999), no. 3, 307-320.
  • [7] Ferrández, A., Gim´enez, A., Lucas, P., Null helices in Lorentzian space forms, Internat. J. Modern Phys. A 16 (2001), 4845–4863.
  • [8] Graves, L. K., Codimension one isometric immersions between Lorentz spaces, Trans. Amer. Math. Soc. 252 (1979), 367–392.
  • [9] Hano, J., Nomizu, K., Surfaces of revolution with constant mean curvature in Lorentz- Minkowski space, Tohoku Math. J. 36 (1984), 427–437.
  • [10] Inoguchi, J., Lee S., Null curves in Minkowski 3-space, International Elec. J. Geom. 1 (2008), 40–83.
  • [11] Klotz, T., Surfaces in Minkowski 3-space on which H and K are linearly related, Michigan Math. J. 30 (1983), 309–315.
  • [12] Kobayashi, O., Maximal surfaces in the 3-dimensional Minkowski space L3, Tokyo J. Math. 6 (1983), 297–309.
  • [13] Kühnel, W., Differential geometry. Curves – surfaces – manifolds. American Mathematical Society, Providence, RI, 2002.
  • [14] Liu, H., Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), 141–149.
  • [15] López, R., Constant mean curvature surfaces with boundary in Euclidean three-space, Tsukuba J. Math. 23 (1999), 27–36.
  • [16] López, R., Constant mean curvature hypersurfaces foliated by spheres, Differential Geom. Appl., 11 (1999), 245–256.
  • [17] López, R., Cyclic hypersurfaces of constant curvature, Advanced Studies in Pure Mathemat- ics, 34, 2002, Minimal Surfaces, Geometric Analysis and Symplectic Geometry, 185–199.
  • [18] López, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, ArXiv:0810.3351 (2008).
  • [19] López, R., Constant Mean Curvature Surfaces with Boundary, Springer-Verlag, Berlin, 2013.
  • [20] López, R., Demir, E., Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature, to appear in Central Eur. J. Math.
  • [21] Magid, M., Lorentzian isoparametric hypersurface, Pacific. J. Math. 118, (1985), no. 1, 165– 197.
  • [22] Mira, P., Pastor, J. A., Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh. Math. 140 (2003), 315–334.
  • [23] Montiel, S., Ros, A., Curves and Surfaces, Amer. Math. Soc., Graduate Studies in Math. 69. 2009.
  • [24] Nesovic, E., Petrovic-Torgasev, M., Verstraelen, L., Curves in Lorentzian spaces, Bolletino U.M.I. 8 (2005), 685–696.
  • [25] O’Neill, B., Elementary Differential Geometry, Academic Press, New York, 1966.
  • [26] O’Neill, B., Semi-Riemannian Geometry. With applications to relativity. Pure and Applied Mathematics, 103. Academic Press, Inc., New York, 1983.
  • [27] B. Riemann, Über die Flächen vom Kleinsten Inhalt be gegebener Begrenzung, Abh. Königl. Ges. Wiss. Gttingen, Math. Kl. 13 (1868), 329–333.
  • [28] Walrave, J., Curves and surfaces in Minkowski space, Thesis (Ph.D.), Katholieke Universiteit Leuven (Belgium), 1995.
  • [29] Weinstein, T., An Introduction to Lorentz Surfaces, de Gruyter Expositions in Mathematics, 22. Walter de Gruyter & Co., Berlin, 1996.
  • [30] Woestijne, I.W., Minimal surfaces in the 3-dimensional Minkowski space. Geometry and Topology of Submanifolds: II, Word Scientic Oress, 344–369, Singapore, 1990.
Year 2014, Volume: 7 Issue: 1, 44 - 107, 30.04.2014
https://doi.org/10.36890/iejg.594497

Abstract

References

  • [1] Abe, N., Koike, N., Yamaguchi, S., Congruence theorems for proper semi-Riemannian hyper- surfaces in a real space form, Yokohama Math. J. 35 (1987), 123–136.
  • [2] Barros, M., Caballero, M., Ortega, M., Rotational surfaces in L3 and solitons in the non-linear sigma model, Comm. Math. Phys. 290 (2009), 437–477.
  • [3] Bonnor, W. B., Null curves in a Minkowski space-time, Tensor (N. S.) 20 (1969), 229–242.
  • [4] Carmo, M. do, Differential Geometry of Curves and Surfaces, Prentice-Hall, Saddle River, 1976.
  • [5] Clelland, J. N., Totally quasi-umbilical timelike surfaces in R1,2, Asian J. Math. 16 (2012), no. 2, 189–208.
  • [6] Dillen, F., Kühnel, W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math. 98 (1999), no. 3, 307-320.
  • [7] Ferrández, A., Gim´enez, A., Lucas, P., Null helices in Lorentzian space forms, Internat. J. Modern Phys. A 16 (2001), 4845–4863.
  • [8] Graves, L. K., Codimension one isometric immersions between Lorentz spaces, Trans. Amer. Math. Soc. 252 (1979), 367–392.
  • [9] Hano, J., Nomizu, K., Surfaces of revolution with constant mean curvature in Lorentz- Minkowski space, Tohoku Math. J. 36 (1984), 427–437.
  • [10] Inoguchi, J., Lee S., Null curves in Minkowski 3-space, International Elec. J. Geom. 1 (2008), 40–83.
  • [11] Klotz, T., Surfaces in Minkowski 3-space on which H and K are linearly related, Michigan Math. J. 30 (1983), 309–315.
  • [12] Kobayashi, O., Maximal surfaces in the 3-dimensional Minkowski space L3, Tokyo J. Math. 6 (1983), 297–309.
  • [13] Kühnel, W., Differential geometry. Curves – surfaces – manifolds. American Mathematical Society, Providence, RI, 2002.
  • [14] Liu, H., Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), 141–149.
  • [15] López, R., Constant mean curvature surfaces with boundary in Euclidean three-space, Tsukuba J. Math. 23 (1999), 27–36.
  • [16] López, R., Constant mean curvature hypersurfaces foliated by spheres, Differential Geom. Appl., 11 (1999), 245–256.
  • [17] López, R., Cyclic hypersurfaces of constant curvature, Advanced Studies in Pure Mathemat- ics, 34, 2002, Minimal Surfaces, Geometric Analysis and Symplectic Geometry, 185–199.
  • [18] López, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, ArXiv:0810.3351 (2008).
  • [19] López, R., Constant Mean Curvature Surfaces with Boundary, Springer-Verlag, Berlin, 2013.
  • [20] López, R., Demir, E., Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature, to appear in Central Eur. J. Math.
  • [21] Magid, M., Lorentzian isoparametric hypersurface, Pacific. J. Math. 118, (1985), no. 1, 165– 197.
  • [22] Mira, P., Pastor, J. A., Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh. Math. 140 (2003), 315–334.
  • [23] Montiel, S., Ros, A., Curves and Surfaces, Amer. Math. Soc., Graduate Studies in Math. 69. 2009.
  • [24] Nesovic, E., Petrovic-Torgasev, M., Verstraelen, L., Curves in Lorentzian spaces, Bolletino U.M.I. 8 (2005), 685–696.
  • [25] O’Neill, B., Elementary Differential Geometry, Academic Press, New York, 1966.
  • [26] O’Neill, B., Semi-Riemannian Geometry. With applications to relativity. Pure and Applied Mathematics, 103. Academic Press, Inc., New York, 1983.
  • [27] B. Riemann, Über die Flächen vom Kleinsten Inhalt be gegebener Begrenzung, Abh. Königl. Ges. Wiss. Gttingen, Math. Kl. 13 (1868), 329–333.
  • [28] Walrave, J., Curves and surfaces in Minkowski space, Thesis (Ph.D.), Katholieke Universiteit Leuven (Belgium), 1995.
  • [29] Weinstein, T., An Introduction to Lorentz Surfaces, de Gruyter Expositions in Mathematics, 22. Walter de Gruyter & Co., Berlin, 1996.
  • [30] Woestijne, I.W., Minimal surfaces in the 3-dimensional Minkowski space. Geometry and Topology of Submanifolds: II, Word Scientic Oress, 344–369, Singapore, 1990.
There are 30 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Rafael López

Publication Date April 30, 2014
Published in Issue Year 2014 Volume: 7 Issue: 1

Cite

APA López, R. (2014). DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE. International Electronic Journal of Geometry, 7(1), 44-107. https://doi.org/10.36890/iejg.594497
AMA López R. DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE. Int. Electron. J. Geom. April 2014;7(1):44-107. doi:10.36890/iejg.594497
Chicago López, Rafael. “DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE”. International Electronic Journal of Geometry 7, no. 1 (April 2014): 44-107. https://doi.org/10.36890/iejg.594497.
EndNote López R (April 1, 2014) DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE. International Electronic Journal of Geometry 7 1 44–107.
IEEE R. López, “DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE”, Int. Electron. J. Geom., vol. 7, no. 1, pp. 44–107, 2014, doi: 10.36890/iejg.594497.
ISNAD López, Rafael. “DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE”. International Electronic Journal of Geometry 7/1 (April 2014), 44-107. https://doi.org/10.36890/iejg.594497.
JAMA López R. DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE. Int. Electron. J. Geom. 2014;7:44–107.
MLA López, Rafael. “DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE”. International Electronic Journal of Geometry, vol. 7, no. 1, 2014, pp. 44-107, doi:10.36890/iejg.594497.
Vancouver López R. DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE. Int. Electron. J. Geom. 2014;7(1):44-107.

Cited By











B-Lift curves and involute curves in Lorentzian 3-space
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.1338814






























Invariant rectification of non-smooth planar curves
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
https://doi.org/10.1007/s13366-023-00712-z











Associated curves of a Frenet curve in the dual Lorentzian space
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.877170

Parallel curves in Minkowski 3-space
Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi
https://doi.org/10.17714/gumusfenbil.855265























Elastic Strips with Spacelike Directrix
Bulletin of the Malaysian Mathematical Sciences Society
https://doi.org/10.1007/s40840-018-0622-0














Singular Minimal Surfaces which are Minimal
Universal Journal of Mathematics and Applications
https://doi.org/10.32323/ujma.984462






О геликоидах Дини в пространстве Минковского
Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»
https://doi.org/10.36535/0233-6723-2020-180-50-57











































On Constraint Manifolds of Lorentz Sphere
Analele Universitatii "Ovidius" Constanta - Seria Matematica
https://doi.org/10.2478/auom-2020-0017











The Lorentzian Version of a Theorem of Krust
Bulletin of the Malaysian Mathematical Sciences Society
https://doi.org/10.1007/s40840-020-00968-x



Elastic strips with null and pseudo-null directrix
International Journal of Geometric Methods in Modern Physics
https://doi.org/10.1142/S021988782050022X




Accretive growth kinematics in Minkowski 3-space
International Journal of Geometric Methods in Modern Physics
https://doi.org/10.1142/S0219887817500694










A simple Gödel-type universe
International Journal of Geometric Methods in Modern Physics
https://doi.org/10.1142/S0219887823500184











Dual transformations and quaternions
Mathematical Methods in the Applied Sciences
https://doi.org/10.1002/mma.7459