[1] Abe, N., Koike, N., Yamaguchi, S., Congruence theorems for proper semi-Riemannian hyper-
surfaces in a real space form, Yokohama Math. J. 35 (1987), 123–136.
[2] Barros, M., Caballero, M., Ortega, M., Rotational surfaces in L3 and solitons in the non-linear
sigma model, Comm. Math. Phys. 290 (2009), 437–477.
[3] Bonnor, W. B., Null curves in a Minkowski space-time, Tensor (N. S.) 20 (1969), 229–242.
[4] Carmo, M. do, Differential Geometry of Curves and Surfaces, Prentice-Hall, Saddle River,
1976.
[5] Clelland, J. N., Totally quasi-umbilical timelike surfaces in R1,2, Asian J. Math. 16 (2012),
no. 2, 189–208.
[6] Dillen, F., Kühnel, W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math.
98 (1999), no. 3, 307-320.
[7] Ferrández, A., Gim´enez, A., Lucas, P., Null helices in Lorentzian space forms, Internat. J.
Modern Phys. A 16 (2001), 4845–4863.
[8] Graves, L. K., Codimension one isometric immersions between Lorentz spaces, Trans. Amer.
Math. Soc. 252 (1979), 367–392.
[9] Hano, J., Nomizu, K., Surfaces of revolution with constant mean curvature in Lorentz- Minkowski
space, Tohoku Math. J. 36 (1984), 427–437.
[10] Inoguchi, J., Lee S., Null curves in Minkowski 3-space, International Elec. J. Geom. 1
(2008), 40–83.
[11] Klotz, T., Surfaces in Minkowski 3-space on which H and K are linearly related, Michigan
Math. J. 30 (1983), 309–315.
[12] Kobayashi, O., Maximal surfaces in the 3-dimensional Minkowski space L3, Tokyo J. Math.
6 (1983), 297–309.
[13] Kühnel, W., Differential geometry. Curves – surfaces – manifolds. American Mathematical
Society, Providence, RI, 2002.
[14] Liu, H., Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom.
64 (1999), 141–149.
[15] López, R., Constant mean curvature surfaces with boundary in Euclidean three-space, Tsukuba
J. Math. 23 (1999), 27–36.
[16] López, R., Constant mean curvature hypersurfaces foliated by spheres, Differential Geom.
Appl., 11 (1999), 245–256.
[17] López, R., Cyclic hypersurfaces of constant curvature, Advanced Studies in Pure Mathemat-
ics, 34, 2002, Minimal Surfaces, Geometric Analysis and Symplectic Geometry, 185–199.
[18] López, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space,
ArXiv:0810.3351 (2008).
[19] López, R., Constant Mean Curvature Surfaces with Boundary, Springer-Verlag, Berlin, 2013.
[20] López, R., Demir, E., Helicoidal surfaces in Minkowski space with constant mean curvature
and constant Gauss curvature, to appear in Central Eur. J. Math.
[21] Magid, M., Lorentzian isoparametric hypersurface, Pacific. J. Math. 118, (1985), no. 1, 165–
197.
[22] Mira, P., Pastor, J. A., Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh.
Math. 140 (2003), 315–334.
[23] Montiel, S., Ros, A., Curves and Surfaces, Amer. Math. Soc., Graduate Studies in Math. 69.
2009.
[24] Nesovic, E., Petrovic-Torgasev, M., Verstraelen, L., Curves in Lorentzian spaces, Bolletino
U.M.I. 8 (2005), 685–696.
[25] O’Neill, B., Elementary Differential Geometry, Academic Press, New York, 1966.
[26] O’Neill, B., Semi-Riemannian Geometry. With applications to relativity. Pure and Applied
Mathematics, 103. Academic Press, Inc., New York, 1983.
[27] B. Riemann, Über die Flächen vom Kleinsten Inhalt be gegebener Begrenzung, Abh. Königl.
Ges. Wiss. Gttingen, Math. Kl. 13 (1868), 329–333.
[28] Walrave, J., Curves and surfaces in Minkowski space, Thesis (Ph.D.), Katholieke Universiteit
Leuven (Belgium), 1995.
[29] Weinstein, T., An Introduction to Lorentz Surfaces, de Gruyter Expositions in Mathematics,
22. Walter de Gruyter & Co., Berlin, 1996.
[30] Woestijne, I.W., Minimal surfaces in the 3-dimensional Minkowski space. Geometry
and Topology of Submanifolds: II, Word Scientic Oress, 344–369, Singapore, 1990.
Year 2014,
Volume: 7 Issue: 1, 44 - 107, 30.04.2014
[1] Abe, N., Koike, N., Yamaguchi, S., Congruence theorems for proper semi-Riemannian hyper-
surfaces in a real space form, Yokohama Math. J. 35 (1987), 123–136.
[2] Barros, M., Caballero, M., Ortega, M., Rotational surfaces in L3 and solitons in the non-linear
sigma model, Comm. Math. Phys. 290 (2009), 437–477.
[3] Bonnor, W. B., Null curves in a Minkowski space-time, Tensor (N. S.) 20 (1969), 229–242.
[4] Carmo, M. do, Differential Geometry of Curves and Surfaces, Prentice-Hall, Saddle River,
1976.
[5] Clelland, J. N., Totally quasi-umbilical timelike surfaces in R1,2, Asian J. Math. 16 (2012),
no. 2, 189–208.
[6] Dillen, F., Kühnel, W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math.
98 (1999), no. 3, 307-320.
[7] Ferrández, A., Gim´enez, A., Lucas, P., Null helices in Lorentzian space forms, Internat. J.
Modern Phys. A 16 (2001), 4845–4863.
[8] Graves, L. K., Codimension one isometric immersions between Lorentz spaces, Trans. Amer.
Math. Soc. 252 (1979), 367–392.
[9] Hano, J., Nomizu, K., Surfaces of revolution with constant mean curvature in Lorentz- Minkowski
space, Tohoku Math. J. 36 (1984), 427–437.
[10] Inoguchi, J., Lee S., Null curves in Minkowski 3-space, International Elec. J. Geom. 1
(2008), 40–83.
[11] Klotz, T., Surfaces in Minkowski 3-space on which H and K are linearly related, Michigan
Math. J. 30 (1983), 309–315.
[12] Kobayashi, O., Maximal surfaces in the 3-dimensional Minkowski space L3, Tokyo J. Math.
6 (1983), 297–309.
[13] Kühnel, W., Differential geometry. Curves – surfaces – manifolds. American Mathematical
Society, Providence, RI, 2002.
[14] Liu, H., Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom.
64 (1999), 141–149.
[15] López, R., Constant mean curvature surfaces with boundary in Euclidean three-space, Tsukuba
J. Math. 23 (1999), 27–36.
[16] López, R., Constant mean curvature hypersurfaces foliated by spheres, Differential Geom.
Appl., 11 (1999), 245–256.
[17] López, R., Cyclic hypersurfaces of constant curvature, Advanced Studies in Pure Mathemat-
ics, 34, 2002, Minimal Surfaces, Geometric Analysis and Symplectic Geometry, 185–199.
[18] López, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space,
ArXiv:0810.3351 (2008).
[19] López, R., Constant Mean Curvature Surfaces with Boundary, Springer-Verlag, Berlin, 2013.
[20] López, R., Demir, E., Helicoidal surfaces in Minkowski space with constant mean curvature
and constant Gauss curvature, to appear in Central Eur. J. Math.
[21] Magid, M., Lorentzian isoparametric hypersurface, Pacific. J. Math. 118, (1985), no. 1, 165–
197.
[22] Mira, P., Pastor, J. A., Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh.
Math. 140 (2003), 315–334.
[23] Montiel, S., Ros, A., Curves and Surfaces, Amer. Math. Soc., Graduate Studies in Math. 69.
2009.
[24] Nesovic, E., Petrovic-Torgasev, M., Verstraelen, L., Curves in Lorentzian spaces, Bolletino
U.M.I. 8 (2005), 685–696.
[25] O’Neill, B., Elementary Differential Geometry, Academic Press, New York, 1966.
[26] O’Neill, B., Semi-Riemannian Geometry. With applications to relativity. Pure and Applied
Mathematics, 103. Academic Press, Inc., New York, 1983.
[27] B. Riemann, Über die Flächen vom Kleinsten Inhalt be gegebener Begrenzung, Abh. Königl.
Ges. Wiss. Gttingen, Math. Kl. 13 (1868), 329–333.
[28] Walrave, J., Curves and surfaces in Minkowski space, Thesis (Ph.D.), Katholieke Universiteit
Leuven (Belgium), 1995.
[29] Weinstein, T., An Introduction to Lorentz Surfaces, de Gruyter Expositions in Mathematics,
22. Walter de Gruyter & Co., Berlin, 1996.
[30] Woestijne, I.W., Minimal surfaces in the 3-dimensional Minkowski space. Geometry
and Topology of Submanifolds: II, Word Scientic Oress, 344–369, Singapore, 1990.
López, R. (2014). DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE. International Electronic Journal of Geometry, 7(1), 44-107. https://doi.org/10.36890/iejg.594497
AMA
López R. DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE. Int. Electron. J. Geom. April 2014;7(1):44-107. doi:10.36890/iejg.594497
Chicago
López, Rafael. “DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE”. International Electronic Journal of Geometry 7, no. 1 (April 2014): 44-107. https://doi.org/10.36890/iejg.594497.
EndNote
López R (April 1, 2014) DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE. International Electronic Journal of Geometry 7 1 44–107.
IEEE
R. López, “DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE”, Int. Electron. J. Geom., vol. 7, no. 1, pp. 44–107, 2014, doi: 10.36890/iejg.594497.
ISNAD
López, Rafael. “DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE”. International Electronic Journal of Geometry 7/1 (April 2014), 44-107. https://doi.org/10.36890/iejg.594497.
JAMA
López R. DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE. Int. Electron. J. Geom. 2014;7:44–107.
MLA
López, Rafael. “DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE”. International Electronic Journal of Geometry, vol. 7, no. 1, 2014, pp. 44-107, doi:10.36890/iejg.594497.
Vancouver
López R. DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE. Int. Electron. J. Geom. 2014;7(1):44-107.