[1] Chirikjian, G. S. and Burdick, J., A modal approach to hyper-redundant manipulator kine-
matics, IEEE Trans. Robot. Autom., 10(1994), 343–354.
[2] Chirikjian, G. S., Closed-form primitives for generating volume preserving
deformations, ASME J.Mechanical Design, 117(1995), 347–354.
[3] Desbrun, M., Cani-Gascuel, M.-P., Active implicit surface for animation, in: Proc. Graphics
Interface Canadian Inf. Process. Soc., 143–150 (1998).
[4] Gage, M., Hamilton, R. S., The heat equation shrinking convex plane curves, J. Differential
Geom., 23(1986), 69–96.
[5] Gluck, H., Higher curvatures of curves in Euclidean space, Amer. Math. Month., 73(1966),
699-704.
[6] Grayson, M., The heat equation shrinks embedded plane curves to round points, J. Differen- tial
Geom., 26(1987), 285–314.
[7] Gürbüzü, N., Inextensible flows of spacelike, timelike and null curves, Int. J. Contemp.
Math.Sciences, 4(2009), 1599-1604.
[8] Hacisalihoğlu, H. H., Differential Geometry, University of I˙n¨onu¨ Press, Malatya, 1983.
[9] Kass, M., Witkin, A., Terzopoulos, D., Snakes: active contour models, in: Proc. 1st
Int.Conference on Computer Vision, 259–268 (1987).
[10] Kwon, D. Y., Park, F. C., Chi, D. P., Inextensible flows of curves and developable surfaces,
Appl. Math. Lett., 18(2005) 1156-1162.
[11] Kwon, D. Y., Park, F. C., Evolution of inelastic plane curves, Appl. Math. Lett., 12(1999),
pp.115-119.
[12] Lu, H. Q., Todhunter, J. S., Sze, T. W., Congruence conditions for nonplanar developable
surfaces and their application to surface recognition, CVGIP, Image Underst., 56(1993), 265– 285.
[13] Öğrenmiş, A. O., Yeneroğlu, M., Inextensible curves in the Galilean Space, International
Journal of the Physical Sciences, 5(2010), 1424-1427.
[14] Yildiz, O. G., Ersoy, S., Masal, M., A Note on Inextensible Flows of Curves on Oriented e,
arXiv:1106.2012v1.
Year 2013,
Volume: 6 Issue: 2, 118 - 124, 30.10.2013
[1] Chirikjian, G. S. and Burdick, J., A modal approach to hyper-redundant manipulator kine-
matics, IEEE Trans. Robot. Autom., 10(1994), 343–354.
[2] Chirikjian, G. S., Closed-form primitives for generating volume preserving
deformations, ASME J.Mechanical Design, 117(1995), 347–354.
[3] Desbrun, M., Cani-Gascuel, M.-P., Active implicit surface for animation, in: Proc. Graphics
Interface Canadian Inf. Process. Soc., 143–150 (1998).
[4] Gage, M., Hamilton, R. S., The heat equation shrinking convex plane curves, J. Differential
Geom., 23(1986), 69–96.
[5] Gluck, H., Higher curvatures of curves in Euclidean space, Amer. Math. Month., 73(1966),
699-704.
[6] Grayson, M., The heat equation shrinks embedded plane curves to round points, J. Differen- tial
Geom., 26(1987), 285–314.
[7] Gürbüzü, N., Inextensible flows of spacelike, timelike and null curves, Int. J. Contemp.
Math.Sciences, 4(2009), 1599-1604.
[8] Hacisalihoğlu, H. H., Differential Geometry, University of I˙n¨onu¨ Press, Malatya, 1983.
[9] Kass, M., Witkin, A., Terzopoulos, D., Snakes: active contour models, in: Proc. 1st
Int.Conference on Computer Vision, 259–268 (1987).
[10] Kwon, D. Y., Park, F. C., Chi, D. P., Inextensible flows of curves and developable surfaces,
Appl. Math. Lett., 18(2005) 1156-1162.
[11] Kwon, D. Y., Park, F. C., Evolution of inelastic plane curves, Appl. Math. Lett., 12(1999),
pp.115-119.
[12] Lu, H. Q., Todhunter, J. S., Sze, T. W., Congruence conditions for nonplanar developable
surfaces and their application to surface recognition, CVGIP, Image Underst., 56(1993), 265– 285.
[13] Öğrenmiş, A. O., Yeneroğlu, M., Inextensible curves in the Galilean Space, International
Journal of the Physical Sciences, 5(2010), 1424-1427.
[14] Yildiz, O. G., Ersoy, S., Masal, M., A Note on Inextensible Flows of Curves on Oriented e,
arXiv:1106.2012v1.
Yıldız, Ö. G., Tosun, M., & Karakuş, S. Ö. (2013). A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n. International Electronic Journal of Geometry, 6(2), 118-124.
AMA
Yıldız ÖG, Tosun M, Karakuş SÖ. A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n. Int. Electron. J. Geom. October 2013;6(2):118-124.
Chicago
Yıldız, Önder Gökmen, Murat Tosun, and Sidika Özkaldi Karakuş. “A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n”. International Electronic Journal of Geometry 6, no. 2 (October 2013): 118-24.
EndNote
Yıldız ÖG, Tosun M, Karakuş SÖ (October 1, 2013) A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n. International Electronic Journal of Geometry 6 2 118–124.
IEEE
Ö. G. Yıldız, M. Tosun, and S. Ö. Karakuş, “A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n”, Int. Electron. J. Geom., vol. 6, no. 2, pp. 118–124, 2013.
ISNAD
Yıldız, Önder Gökmen et al. “A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n”. International Electronic Journal of Geometry 6/2 (October 2013), 118-124.
JAMA
Yıldız ÖG, Tosun M, Karakuş SÖ. A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n. Int. Electron. J. Geom. 2013;6:118–124.
MLA
Yıldız, Önder Gökmen et al. “A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n”. International Electronic Journal of Geometry, vol. 6, no. 2, 2013, pp. 118-24.
Vancouver
Yıldız ÖG, Tosun M, Karakuş SÖ. A NOTE ON INEXTENSIBLE FLOWS OF CURVES IN E^n. Int. Electron. J. Geom. 2013;6(2):118-24.