Research Article
BibTex RIS Cite
Year 2020, Volume: 13 Issue: 1, 21 - 40, 30.01.2020
https://doi.org/10.36890/iejg.590595

Abstract

References

  • [1] Abatangelo, V., Fisher, J. C., Korchmáros, G., Larato, B.: On the mutual position of two irreducible conics in PG(2; q), q odd. Adv. Geom. 11 (4), 603–614 (2011).
  • [2] Berger, M.: Geometry II, Universitext. Springer-Verlag, Berlin (1987).
  • [3] Bos, H. J. M., Kers, C., Oort, F., Raven, D.W.: Poncelet’s closure theorem. Exposition. Math. 5 (4), 289–364 (1987).
  • [4] Cayley, A.: Developments on the porism of the in-and-circumscribed polygon. Philosophical magazine. 7 (4), 289–364 (1854).
  • [5] Dragović, V., Radnović, M.: Poncelet porisms and beyond. Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel (2011).
  • [6] Griffiths, P., Harris, J.: On Cayley’s explicit solution to Poncelet’s porism. Enseign. Math. 24 (1–2), 31–40 (1978).
  • [7] Halbeisen, L., Hungerbühler, N.: A Simple Proof of Poncelet’s Theorem. Amer. Math. Monthly. 122 (6), 603–614 (2015).
  • [8] Hardy, G. H., Wright, E. M.: An introduction to the theory of numbers. Oxford University Press, Oxford (2008).
  • [9] Hirschfeld, J.W. P.: Projective geometries over finite fields. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1998).
  • [10] Hungerbühler, N., Kusejko, K.: Poncelet’s Theorem in the four non-isomorphic finite projective planes of order 9. Ars Combin. 140, 21–44 (2018).
  • [11] Korchmáros, G., Sz˝onyi, T.: Affinely regular polygons in an affine plane. Contrib. Discrete Math. 3 (1), 20–38 (2008).
  • [12] Kusejko, K.: Simultaneous diagonalization of conics in PG(2; q). Des. Codes Cryprogr. 79 (3), 565–581 (2016).
  • [13] Luisi, G.: On a theorem of Poncelet. Atti Sem. Mat. Fis. Univ. Modena. 31 (2), 341–347 (1984).
  • [14] Poncelet, J.-V.: Traité des propriétés projectives des figures. Tome II. Les Grands Classiques Gauthier-Villars. Reprint of the second (1866) edition. Éditions Jacques Gabay, Sceaux (1995).

A Poncelet Criterion for Special Pairs of Conics in $PG(2,p^m)$

Year 2020, Volume: 13 Issue: 1, 21 - 40, 30.01.2020
https://doi.org/10.36890/iejg.590595

Abstract

We study Poncelet's Theorem in finite projective planes over the field GF(q), pm for p an odd prime and m > 0, for a particular pencil of conics. We investigate whether we can find polygons with n sides which are inscribed in one conic and circumscribed around the other, so-called Poncelet Polygons. By using suitable elements of the dihedral group for these pairs, we prove that the length n of such Poncelet Polygons is independent of the starting point. In this sense Poncelet's Theorem is valid. By using Euler's divisor sum formula for the totient function, we can make a statement about the number of different conic pairs, which carry Poncelet Polygons of length n. Moreover, we will introduce polynomials whose zeros in GF(q) yield information about the relation of a given pair of conics. In particular, we can decide for a given integer n, whether and how we can find Poncelet Polygons


for pairs of conics in the plane PG(2,q). 

References

  • [1] Abatangelo, V., Fisher, J. C., Korchmáros, G., Larato, B.: On the mutual position of two irreducible conics in PG(2; q), q odd. Adv. Geom. 11 (4), 603–614 (2011).
  • [2] Berger, M.: Geometry II, Universitext. Springer-Verlag, Berlin (1987).
  • [3] Bos, H. J. M., Kers, C., Oort, F., Raven, D.W.: Poncelet’s closure theorem. Exposition. Math. 5 (4), 289–364 (1987).
  • [4] Cayley, A.: Developments on the porism of the in-and-circumscribed polygon. Philosophical magazine. 7 (4), 289–364 (1854).
  • [5] Dragović, V., Radnović, M.: Poncelet porisms and beyond. Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel (2011).
  • [6] Griffiths, P., Harris, J.: On Cayley’s explicit solution to Poncelet’s porism. Enseign. Math. 24 (1–2), 31–40 (1978).
  • [7] Halbeisen, L., Hungerbühler, N.: A Simple Proof of Poncelet’s Theorem. Amer. Math. Monthly. 122 (6), 603–614 (2015).
  • [8] Hardy, G. H., Wright, E. M.: An introduction to the theory of numbers. Oxford University Press, Oxford (2008).
  • [9] Hirschfeld, J.W. P.: Projective geometries over finite fields. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1998).
  • [10] Hungerbühler, N., Kusejko, K.: Poncelet’s Theorem in the four non-isomorphic finite projective planes of order 9. Ars Combin. 140, 21–44 (2018).
  • [11] Korchmáros, G., Sz˝onyi, T.: Affinely regular polygons in an affine plane. Contrib. Discrete Math. 3 (1), 20–38 (2008).
  • [12] Kusejko, K.: Simultaneous diagonalization of conics in PG(2; q). Des. Codes Cryprogr. 79 (3), 565–581 (2016).
  • [13] Luisi, G.: On a theorem of Poncelet. Atti Sem. Mat. Fis. Univ. Modena. 31 (2), 341–347 (1984).
  • [14] Poncelet, J.-V.: Traité des propriétés projectives des figures. Tome II. Les Grands Classiques Gauthier-Villars. Reprint of the second (1866) edition. Éditions Jacques Gabay, Sceaux (1995).
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Norbert Hungerbühler 0000-0001-6191-0022

Katharina Kusejko This is me 0000-0002-4638-1940

Publication Date January 30, 2020
Acceptance Date February 11, 2020
Published in Issue Year 2020 Volume: 13 Issue: 1

Cite

APA Hungerbühler, N., & Kusejko, K. (2020). A Poncelet Criterion for Special Pairs of Conics in $PG(2,p^m)$. International Electronic Journal of Geometry, 13(1), 21-40. https://doi.org/10.36890/iejg.590595
AMA Hungerbühler N, Kusejko K. A Poncelet Criterion for Special Pairs of Conics in $PG(2,p^m)$. Int. Electron. J. Geom. January 2020;13(1):21-40. doi:10.36890/iejg.590595
Chicago Hungerbühler, Norbert, and Katharina Kusejko. “A Poncelet Criterion for Special Pairs of Conics in $PG(2,p^m)$”. International Electronic Journal of Geometry 13, no. 1 (January 2020): 21-40. https://doi.org/10.36890/iejg.590595.
EndNote Hungerbühler N, Kusejko K (January 1, 2020) A Poncelet Criterion for Special Pairs of Conics in $PG(2,p^m)$. International Electronic Journal of Geometry 13 1 21–40.
IEEE N. Hungerbühler and K. Kusejko, “A Poncelet Criterion for Special Pairs of Conics in $PG(2,p^m)$”, Int. Electron. J. Geom., vol. 13, no. 1, pp. 21–40, 2020, doi: 10.36890/iejg.590595.
ISNAD Hungerbühler, Norbert - Kusejko, Katharina. “A Poncelet Criterion for Special Pairs of Conics in $PG(2,p^m)$”. International Electronic Journal of Geometry 13/1 (January 2020), 21-40. https://doi.org/10.36890/iejg.590595.
JAMA Hungerbühler N, Kusejko K. A Poncelet Criterion for Special Pairs of Conics in $PG(2,p^m)$. Int. Electron. J. Geom. 2020;13:21–40.
MLA Hungerbühler, Norbert and Katharina Kusejko. “A Poncelet Criterion for Special Pairs of Conics in $PG(2,p^m)$”. International Electronic Journal of Geometry, vol. 13, no. 1, 2020, pp. 21-40, doi:10.36890/iejg.590595.
Vancouver Hungerbühler N, Kusejko K. A Poncelet Criterion for Special Pairs of Conics in $PG(2,p^m)$. Int. Electron. J. Geom. 2020;13(1):21-40.