[3] Chaubey, S. K., Ojha, R.H.: On a semi-symmetric non-metric and quarter symmetric metric connexions. Tensor N.S. 70 (2), 202-203 (2008).
[4] Chaubey, S. K., Ojha, R.H.: On a semi-symmetric non-metric connection. Filomat. 26 (2), 269-275 (2012).
[5] Chaubey, S. K., Yildiz, A.: Riemannian manifolds admitting a new type of semisymmetric nonmetric connection. Turkish Journal of Mathematics.
43 (4), 1887-1904 (2019).
[6] Hyden, A.: Sub-Spaces of a Space with Torsion. Proceedings of London Mathematical Society. 2 (1), 27-50 (1932).
[7] Kobayashi, S., Nomizu, K.: Foundation of differential geometry, Vol. I and II. Interscience Publisher, London (1969).
[8] Kumar, S., Kandpal, D., Upreti, J.: On a HSU-unified Structure Manifold with a Recurrent Metric Connection. Journal of Computer and
Mathematical Sciences. 8 (8), 366-372 (2017).
[9] Kumar, S., Upreti, J.: A new connection in an almost para-contact manifold. Journal of National Academy of Mathematics, Gorakhpur. 28,
42-52 (2014).
[10] MIshra, R.S.: Structures on a differentiable manifold and their applications. Chandrama Prakashan, 50-A Balrampur Hause, Allahabad,
India (1984).
[11] Nivas, R., Agnihotri, A.: On HSU-unified Structure Manifold with a Quarter-symmetric Non-metric Connection. Bulletin of Mathematical
Sciences and Applications. 3, 63-70 (2013).
[12] Sengupta, J., De, U.C, Binh, T.: On a type of semi-symmetric non-metric connection on a Riemannian manifold. Indian Journal of Pure and
Applied Mathematics. 31 (12) 1659-1670 (2000).
[13] Yano, K.: On semi-symmetric metric connections. Revue Roumaine de Mathematiques Pures et Appliquees. 15 1579-1586 (1970).
On a Type of Semi-Symmetric Non-Metric Connection in HSU-Unified Structure Manifold
Year 2021,
Volume: 14 Issue: 2, 383 - 390, 29.10.2021
In the present paper, we have studied some properties of a semi-symmetric non-metric connection in HSU-unified structure manifold and HSU-Kahler manifold. Some new results on such manifolds have been obtained.
[3] Chaubey, S. K., Ojha, R.H.: On a semi-symmetric non-metric and quarter symmetric metric connexions. Tensor N.S. 70 (2), 202-203 (2008).
[4] Chaubey, S. K., Ojha, R.H.: On a semi-symmetric non-metric connection. Filomat. 26 (2), 269-275 (2012).
[5] Chaubey, S. K., Yildiz, A.: Riemannian manifolds admitting a new type of semisymmetric nonmetric connection. Turkish Journal of Mathematics.
43 (4), 1887-1904 (2019).
[6] Hyden, A.: Sub-Spaces of a Space with Torsion. Proceedings of London Mathematical Society. 2 (1), 27-50 (1932).
[7] Kobayashi, S., Nomizu, K.: Foundation of differential geometry, Vol. I and II. Interscience Publisher, London (1969).
[8] Kumar, S., Kandpal, D., Upreti, J.: On a HSU-unified Structure Manifold with a Recurrent Metric Connection. Journal of Computer and
Mathematical Sciences. 8 (8), 366-372 (2017).
[9] Kumar, S., Upreti, J.: A new connection in an almost para-contact manifold. Journal of National Academy of Mathematics, Gorakhpur. 28,
42-52 (2014).
[10] MIshra, R.S.: Structures on a differentiable manifold and their applications. Chandrama Prakashan, 50-A Balrampur Hause, Allahabad,
India (1984).
[11] Nivas, R., Agnihotri, A.: On HSU-unified Structure Manifold with a Quarter-symmetric Non-metric Connection. Bulletin of Mathematical
Sciences and Applications. 3, 63-70 (2013).
[12] Sengupta, J., De, U.C, Binh, T.: On a type of semi-symmetric non-metric connection on a Riemannian manifold. Indian Journal of Pure and
Applied Mathematics. 31 (12) 1659-1670 (2000).
[13] Yano, K.: On semi-symmetric metric connections. Revue Roumaine de Mathematiques Pures et Appliquees. 15 1579-1586 (1970).
Sundriyal, S., & Upreti, J. (2021). On a Type of Semi-Symmetric Non-Metric Connection in HSU-Unified Structure Manifold. International Electronic Journal of Geometry, 14(2), 383-390. https://doi.org/10.36890/iejg.980796
AMA
Sundriyal S, Upreti J. On a Type of Semi-Symmetric Non-Metric Connection in HSU-Unified Structure Manifold. Int. Electron. J. Geom. October 2021;14(2):383-390. doi:10.36890/iejg.980796
Chicago
Sundriyal, Shivani, and Jaya Upreti. “On a Type of Semi-Symmetric Non-Metric Connection in HSU-Unified Structure Manifold”. International Electronic Journal of Geometry 14, no. 2 (October 2021): 383-90. https://doi.org/10.36890/iejg.980796.
EndNote
Sundriyal S, Upreti J (October 1, 2021) On a Type of Semi-Symmetric Non-Metric Connection in HSU-Unified Structure Manifold. International Electronic Journal of Geometry 14 2 383–390.
IEEE
S. Sundriyal and J. Upreti, “On a Type of Semi-Symmetric Non-Metric Connection in HSU-Unified Structure Manifold”, Int. Electron. J. Geom., vol. 14, no. 2, pp. 383–390, 2021, doi: 10.36890/iejg.980796.
ISNAD
Sundriyal, Shivani - Upreti, Jaya. “On a Type of Semi-Symmetric Non-Metric Connection in HSU-Unified Structure Manifold”. International Electronic Journal of Geometry 14/2 (October 2021), 383-390. https://doi.org/10.36890/iejg.980796.
JAMA
Sundriyal S, Upreti J. On a Type of Semi-Symmetric Non-Metric Connection in HSU-Unified Structure Manifold. Int. Electron. J. Geom. 2021;14:383–390.
MLA
Sundriyal, Shivani and Jaya Upreti. “On a Type of Semi-Symmetric Non-Metric Connection in HSU-Unified Structure Manifold”. International Electronic Journal of Geometry, vol. 14, no. 2, 2021, pp. 383-90, doi:10.36890/iejg.980796.
Vancouver
Sundriyal S, Upreti J. On a Type of Semi-Symmetric Non-Metric Connection in HSU-Unified Structure Manifold. Int. Electron. J. Geom. 2021;14(2):383-90.