Research Article
BibTex RIS Cite
Year 2022, Volume: 15 Issue: 2, 313 - 320, 31.10.2022
https://doi.org/10.36890/iejg.1064089

Abstract

References

  • [1] Daniilidis, K.: Hand-eye calibration using dual quaternions. International Journal of Robotics Research. 18, 286-298 (1999).
  • [2] Fischer, I.: Dual-number method in kinematics, statics and dynamics. CRC Press (1998).
  • [3] Funda, J., Paul, R. P.: A computational analysis of screw transformations in robotics. IEEE Transactions on Robotics and Automation. 6, 348-356 (1990).
  • [4] Goldman, R.: Rethinking Quaternions: Theory and Computation. Synthesis Lectures on Computer Graphics and Animation, ed. Brian A. Barsky, No. 13. San Rafael: Morgan & Claypool Publishers (2010).
  • [5] Wang, H., Goldman, R.: Surfaces of revolution with moving axes and angles. Graphical Models. 106, 101047 (2019). https://doi.org/10.1016/j.gmod.2019.101047
  • [6] Hamilton, W.: Elements of Quaternions. Cambridge University Press. Cambridge, UK (1866).
  • [7] Jüttler, B.: Visualization of Moving Objects using Dual Quaternion Curves. Computers and Graphics. 18, 315-326 (1994).
  • [8] McCarthy, M.: Introduction to theoretical kinematics. The MIT Press (1990).
  • [9] Pressley, A.: Elementary differential geometry. Springer, London (2012).
  • [10] Singh, R. R.: Engineering Mathematics. Tata McGraw-Hill (1993).
  • [11] Swokowski, E. W.: Calculus with analytic geometry. Prindle, Webe & Schmidt (1983).
  • [12] Zatsiorsky, V. M.: Kinematics of Human Motion. Human Kinetics (1998).

Determine When a Parametric Surface is a Surface of Revolution

Year 2022, Volume: 15 Issue: 2, 313 - 320, 31.10.2022
https://doi.org/10.36890/iejg.1064089

Abstract

A surface of revolution is a surface that can be generated by rotating a planar curve (the directrix)
around a straight line (the axis) in the same plane. Using the mathematics of quaternions, we provide a parametric
equation of a surface of revolution generated by rotating a directrix about an axis by quaternion multiplication
of the parametric representations of the directrix curve and the line of axis. Then, we describe an algorithm
to determine whether a parametric surface is a surface of revolution, and identify the axis and the directrix.
Examples are provided to illustrate our algorithm.

References

  • [1] Daniilidis, K.: Hand-eye calibration using dual quaternions. International Journal of Robotics Research. 18, 286-298 (1999).
  • [2] Fischer, I.: Dual-number method in kinematics, statics and dynamics. CRC Press (1998).
  • [3] Funda, J., Paul, R. P.: A computational analysis of screw transformations in robotics. IEEE Transactions on Robotics and Automation. 6, 348-356 (1990).
  • [4] Goldman, R.: Rethinking Quaternions: Theory and Computation. Synthesis Lectures on Computer Graphics and Animation, ed. Brian A. Barsky, No. 13. San Rafael: Morgan & Claypool Publishers (2010).
  • [5] Wang, H., Goldman, R.: Surfaces of revolution with moving axes and angles. Graphical Models. 106, 101047 (2019). https://doi.org/10.1016/j.gmod.2019.101047
  • [6] Hamilton, W.: Elements of Quaternions. Cambridge University Press. Cambridge, UK (1866).
  • [7] Jüttler, B.: Visualization of Moving Objects using Dual Quaternion Curves. Computers and Graphics. 18, 315-326 (1994).
  • [8] McCarthy, M.: Introduction to theoretical kinematics. The MIT Press (1990).
  • [9] Pressley, A.: Elementary differential geometry. Springer, London (2012).
  • [10] Singh, R. R.: Engineering Mathematics. Tata McGraw-Hill (1993).
  • [11] Swokowski, E. W.: Calculus with analytic geometry. Prindle, Webe & Schmidt (1983).
  • [12] Zatsiorsky, V. M.: Kinematics of Human Motion. Human Kinetics (1998).
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Haohao Wang 0000-0001-7942-5623

Jerzy Wojdylo This is me 0000-0001-6964-6254

Early Pub Date July 23, 2022
Publication Date October 31, 2022
Acceptance Date October 19, 2022
Published in Issue Year 2022 Volume: 15 Issue: 2

Cite

APA Wang, H., & Wojdylo, J. (2022). Determine When a Parametric Surface is a Surface of Revolution. International Electronic Journal of Geometry, 15(2), 313-320. https://doi.org/10.36890/iejg.1064089
AMA Wang H, Wojdylo J. Determine When a Parametric Surface is a Surface of Revolution. Int. Electron. J. Geom. October 2022;15(2):313-320. doi:10.36890/iejg.1064089
Chicago Wang, Haohao, and Jerzy Wojdylo. “Determine When a Parametric Surface Is a Surface of Revolution”. International Electronic Journal of Geometry 15, no. 2 (October 2022): 313-20. https://doi.org/10.36890/iejg.1064089.
EndNote Wang H, Wojdylo J (October 1, 2022) Determine When a Parametric Surface is a Surface of Revolution. International Electronic Journal of Geometry 15 2 313–320.
IEEE H. Wang and J. Wojdylo, “Determine When a Parametric Surface is a Surface of Revolution”, Int. Electron. J. Geom., vol. 15, no. 2, pp. 313–320, 2022, doi: 10.36890/iejg.1064089.
ISNAD Wang, Haohao - Wojdylo, Jerzy. “Determine When a Parametric Surface Is a Surface of Revolution”. International Electronic Journal of Geometry 15/2 (October 2022), 313-320. https://doi.org/10.36890/iejg.1064089.
JAMA Wang H, Wojdylo J. Determine When a Parametric Surface is a Surface of Revolution. Int. Electron. J. Geom. 2022;15:313–320.
MLA Wang, Haohao and Jerzy Wojdylo. “Determine When a Parametric Surface Is a Surface of Revolution”. International Electronic Journal of Geometry, vol. 15, no. 2, 2022, pp. 313-20, doi:10.36890/iejg.1064089.
Vancouver Wang H, Wojdylo J. Determine When a Parametric Surface is a Surface of Revolution. Int. Electron. J. Geom. 2022;15(2):313-20.